Metamath Proof Explorer


Theorem iblspltprt

Description: If a function is integrable on any interval of a partition, then it is integrable on the whole interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblspltprt.1 t φ
iblspltprt.2 φ M
iblspltprt.3 φ N M + 1
iblspltprt.4 φ i M N P i
iblspltprt.5 φ i M ..^ N P i < P i + 1
iblspltprt.6 φ t P M P N A
iblspltprt.7 φ i M ..^ N t P i P i + 1 A 𝐿 1
Assertion iblspltprt φ t P M P N A 𝐿 1

Proof

Step Hyp Ref Expression
1 iblspltprt.1 t φ
2 iblspltprt.2 φ M
3 iblspltprt.3 φ N M + 1
4 iblspltprt.4 φ i M N P i
5 iblspltprt.5 φ i M ..^ N P i < P i + 1
6 iblspltprt.6 φ t P M P N A
7 iblspltprt.7 φ i M ..^ N t P i P i + 1 A 𝐿 1
8 2 peano2zd φ M + 1
9 eluzelz N M + 1 N
10 3 9 syl φ N
11 eluzle N M + 1 M + 1 N
12 3 11 syl φ M + 1 N
13 10 zred φ N
14 13 leidd φ N N
15 8 10 10 12 14 elfzd φ N M + 1 N
16 fveq2 j = M + 1 P j = P M + 1
17 16 oveq2d j = M + 1 P M P j = P M P M + 1
18 17 mpteq1d j = M + 1 t P M P j A = t P M P M + 1 A
19 18 eleq1d j = M + 1 t P M P j A 𝐿 1 t P M P M + 1 A 𝐿 1
20 19 imbi2d j = M + 1 φ t P M P j A 𝐿 1 φ t P M P M + 1 A 𝐿 1
21 fveq2 j = k P j = P k
22 21 oveq2d j = k P M P j = P M P k
23 22 mpteq1d j = k t P M P j A = t P M P k A
24 23 eleq1d j = k t P M P j A 𝐿 1 t P M P k A 𝐿 1
25 24 imbi2d j = k φ t P M P j A 𝐿 1 φ t P M P k A 𝐿 1
26 fveq2 j = k + 1 P j = P k + 1
27 26 oveq2d j = k + 1 P M P j = P M P k + 1
28 27 mpteq1d j = k + 1 t P M P j A = t P M P k + 1 A
29 28 eleq1d j = k + 1 t P M P j A 𝐿 1 t P M P k + 1 A 𝐿 1
30 29 imbi2d j = k + 1 φ t P M P j A 𝐿 1 φ t P M P k + 1 A 𝐿 1
31 fveq2 j = N P j = P N
32 31 oveq2d j = N P M P j = P M P N
33 32 mpteq1d j = N t P M P j A = t P M P N A
34 33 eleq1d j = N t P M P j A 𝐿 1 t P M P N A 𝐿 1
35 34 imbi2d j = N φ t P M P j A 𝐿 1 φ t P M P N A 𝐿 1
36 uzid M M M
37 2 36 syl φ M M
38 2 zred φ M
39 1red φ 1
40 38 39 readdcld φ M + 1
41 38 ltp1d φ M < M + 1
42 38 40 13 41 12 ltletrd φ M < N
43 elfzo2 M M ..^ N M M N M < N
44 37 10 42 43 syl3anbrc φ M M ..^ N
45 fveq2 i = M P i = P M
46 fvoveq1 i = M P i + 1 = P M + 1
47 45 46 oveq12d i = M P i P i + 1 = P M P M + 1
48 47 mpteq1d i = M t P i P i + 1 A = t P M P M + 1 A
49 48 eleq1d i = M t P i P i + 1 A 𝐿 1 t P M P M + 1 A 𝐿 1
50 49 imbi2d i = M φ t P i P i + 1 A 𝐿 1 φ t P M P M + 1 A 𝐿 1
51 7 expcom i M ..^ N φ t P i P i + 1 A 𝐿 1
52 50 51 vtoclga M M ..^ N φ t P M P M + 1 A 𝐿 1
53 44 52 mpcom φ t P M P M + 1 A 𝐿 1
54 53 a1i N M + 1 φ t P M P M + 1 A 𝐿 1
55 nfv t k M + 1 ..^ N
56 nfmpt1 _ t t P M P k A
57 56 nfel1 t t P M P k A 𝐿 1
58 1 57 nfim t φ t P M P k A 𝐿 1
59 55 58 1 nf3an t k M + 1 ..^ N φ t P M P k A 𝐿 1 φ
60 simp3 k M + 1 ..^ N φ t P M P k A 𝐿 1 φ φ
61 simp1 k M + 1 ..^ N φ t P M P k A 𝐿 1 φ k M + 1 ..^ N
62 38 leidd φ M M
63 38 13 42 ltled φ M N
64 2 10 2 62 63 elfzd φ M M N
65 64 ancli φ φ M M N
66 eleq1 i = M i M N M M N
67 66 anbi2d i = M φ i M N φ M M N
68 45 eleq1d i = M P i P M
69 67 68 imbi12d i = M φ i M N P i φ M M N P M
70 69 4 vtoclg M M N φ M M N P M
71 64 65 70 sylc φ P M
72 71 adantr φ k M + 1 ..^ N P M
73 72 rexrd φ k M + 1 ..^ N P M *
74 simpl φ k M + 1 ..^ N φ
75 elfzoelz k M + 1 ..^ N k
76 75 adantl φ k M + 1 ..^ N k
77 38 adantr φ k M + 1 ..^ N M
78 76 zred φ k M + 1 ..^ N k
79 40 adantr φ k M + 1 ..^ N M + 1
80 41 adantr φ k M + 1 ..^ N M < M + 1
81 elfzole1 k M + 1 ..^ N M + 1 k
82 81 adantl φ k M + 1 ..^ N M + 1 k
83 77 79 78 80 82 ltletrd φ k M + 1 ..^ N M < k
84 77 78 83 ltled φ k M + 1 ..^ N M k
85 13 adantr φ k M + 1 ..^ N N
86 elfzolt2 k M + 1 ..^ N k < N
87 86 adantl φ k M + 1 ..^ N k < N
88 78 85 87 ltled φ k M + 1 ..^ N k N
89 2 10 jca φ M N
90 89 adantr φ k M + 1 ..^ N M N
91 elfz1 M N k M N k M k k N
92 90 91 syl φ k M + 1 ..^ N k M N k M k k N
93 76 84 88 92 mpbir3and φ k M + 1 ..^ N k M N
94 eleq1 i = k i M N k M N
95 94 anbi2d i = k φ i M N φ k M N
96 fveq2 i = k P i = P k
97 96 eleq1d i = k P i P k
98 95 97 imbi12d i = k φ i M N P i φ k M N P k
99 98 4 chvarvv φ k M N P k
100 74 93 99 syl2anc φ k M + 1 ..^ N P k
101 100 rexrd φ k M + 1 ..^ N P k *
102 76 peano2zd φ k M + 1 ..^ N k + 1
103 102 zred φ k M + 1 ..^ N k + 1
104 1red φ k M + 1 ..^ N 1
105 77 78 104 83 ltadd1dd φ k M + 1 ..^ N M + 1 < k + 1
106 77 79 103 80 105 lttrd φ k M + 1 ..^ N M < k + 1
107 77 103 106 ltled φ k M + 1 ..^ N M k + 1
108 zltp1le k N k < N k + 1 N
109 75 10 108 syl2anr φ k M + 1 ..^ N k < N k + 1 N
110 87 109 mpbid φ k M + 1 ..^ N k + 1 N
111 elfz1 M N k + 1 M N k + 1 M k + 1 k + 1 N
112 90 111 syl φ k M + 1 ..^ N k + 1 M N k + 1 M k + 1 k + 1 N
113 102 107 110 112 mpbir3and φ k M + 1 ..^ N k + 1 M N
114 74 113 jca φ k M + 1 ..^ N φ k + 1 M N
115 eleq1 i = k + 1 i M N k + 1 M N
116 115 anbi2d i = k + 1 φ i M N φ k + 1 M N
117 fveq2 i = k + 1 P i = P k + 1
118 117 eleq1d i = k + 1 P i P k + 1
119 116 118 imbi12d i = k + 1 φ i M N P i φ k + 1 M N P k + 1
120 119 4 vtoclg k + 1 M N φ k + 1 M N P k + 1
121 113 114 120 sylc φ k M + 1 ..^ N P k + 1
122 121 rexrd φ k M + 1 ..^ N P k + 1 *
123 eluz M k k M M k
124 2 75 123 syl2an φ k M + 1 ..^ N k M M k
125 84 124 mpbird φ k M + 1 ..^ N k M
126 simpll φ k M + 1 ..^ N i M k φ
127 elfzelz i M k i
128 127 adantl φ k M + 1 ..^ N i M k i
129 elfzle1 i M k M i
130 129 adantl φ k M + 1 ..^ N i M k M i
131 128 zred φ k M + 1 ..^ N i M k i
132 126 13 syl φ k M + 1 ..^ N i M k N
133 78 adantr φ k M + 1 ..^ N i M k k
134 elfzle2 i M k i k
135 134 adantl φ k M + 1 ..^ N i M k i k
136 87 adantr φ k M + 1 ..^ N i M k k < N
137 131 133 132 135 136 lelttrd φ k M + 1 ..^ N i M k i < N
138 131 132 137 ltled φ k M + 1 ..^ N i M k i N
139 elfz1 M N i M N i M i i N
140 126 89 139 3syl φ k M + 1 ..^ N i M k i M N i M i i N
141 128 130 138 140 mpbir3and φ k M + 1 ..^ N i M k i M N
142 126 141 4 syl2anc φ k M + 1 ..^ N i M k P i
143 simpll φ k M + 1 ..^ N i M k 1 φ
144 elfzelz i M k 1 i
145 144 adantl φ k M + 1 ..^ N i M k 1 i
146 elfzle1 i M k 1 M i
147 146 adantl φ k M + 1 ..^ N i M k 1 M i
148 145 zred φ k M + 1 ..^ N i M k 1 i
149 143 13 syl φ k M + 1 ..^ N i M k 1 N
150 78 adantr φ k M + 1 ..^ N i M k 1 k
151 1red φ k M + 1 ..^ N i M k 1 1
152 150 151 resubcld φ k M + 1 ..^ N i M k 1 k 1
153 elfzle2 i M k 1 i k 1
154 153 adantl φ k M + 1 ..^ N i M k 1 i k 1
155 75 zred k M + 1 ..^ N k
156 1red k M + 1 ..^ N 1
157 155 156 resubcld k M + 1 ..^ N k 1
158 elfzoel2 k M + 1 ..^ N N
159 158 zred k M + 1 ..^ N N
160 155 ltm1d k M + 1 ..^ N k 1 < k
161 157 155 159 160 86 lttrd k M + 1 ..^ N k 1 < N
162 161 ad2antlr φ k M + 1 ..^ N i M k 1 k 1 < N
163 148 152 149 154 162 lelttrd φ k M + 1 ..^ N i M k 1 i < N
164 148 149 163 ltled φ k M + 1 ..^ N i M k 1 i N
165 143 89 139 3syl φ k M + 1 ..^ N i M k 1 i M N i M i i N
166 145 147 164 165 mpbir3and φ k M + 1 ..^ N i M k 1 i M N
167 143 166 4 syl2anc φ k M + 1 ..^ N i M k 1 P i
168 145 peano2zd φ k M + 1 ..^ N i M k 1 i + 1
169 elfzel1 i M k 1 M
170 169 zred i M k 1 M
171 144 zred i M k 1 i
172 1red i M k 1 1
173 171 172 readdcld i M k 1 i + 1
174 171 ltp1d i M k 1 i < i + 1
175 170 171 173 146 174 lelttrd i M k 1 M < i + 1
176 170 173 175 ltled i M k 1 M i + 1
177 176 adantl φ k M + 1 ..^ N i M k 1 M i + 1
178 143 3 9 3syl φ k M + 1 ..^ N i M k 1 N
179 zltp1le i N i < N i + 1 N
180 145 178 179 syl2anc φ k M + 1 ..^ N i M k 1 i < N i + 1 N
181 163 180 mpbid φ k M + 1 ..^ N i M k 1 i + 1 N
182 elfz1 M N i + 1 M N i + 1 M i + 1 i + 1 N
183 143 89 182 3syl φ k M + 1 ..^ N i M k 1 i + 1 M N i + 1 M i + 1 i + 1 N
184 168 177 181 183 mpbir3and φ k M + 1 ..^ N i M k 1 i + 1 M N
185 143 184 jca φ k M + 1 ..^ N i M k 1 φ i + 1 M N
186 eleq1 k = i + 1 k M N i + 1 M N
187 186 anbi2d k = i + 1 φ k M N φ i + 1 M N
188 fveq2 k = i + 1 P k = P i + 1
189 188 eleq1d k = i + 1 P k P i + 1
190 187 189 imbi12d k = i + 1 φ k M N P k φ i + 1 M N P i + 1
191 190 99 vtoclg i + 1 M N φ i + 1 M N P i + 1
192 184 185 191 sylc φ k M + 1 ..^ N i M k 1 P i + 1
193 elfzuz i M k 1 i M
194 193 adantl φ k M + 1 ..^ N i M k 1 i M
195 elfzo2 i M ..^ N i M N i < N
196 194 178 163 195 syl3anbrc φ k M + 1 ..^ N i M k 1 i M ..^ N
197 143 196 5 syl2anc φ k M + 1 ..^ N i M k 1 P i < P i + 1
198 167 192 197 ltled φ k M + 1 ..^ N i M k 1 P i P i + 1
199 125 142 198 monoord φ k M + 1 ..^ N P M P k
200 158 adantl φ k M + 1 ..^ N N
201 elfzo2 k M ..^ N k M N k < N
202 125 200 87 201 syl3anbrc φ k M + 1 ..^ N k M ..^ N
203 eleq1 i = k i M ..^ N k M ..^ N
204 203 anbi2d i = k φ i M ..^ N φ k M ..^ N
205 fvoveq1 i = k P i + 1 = P k + 1
206 96 205 breq12d i = k P i < P i + 1 P k < P k + 1
207 204 206 imbi12d i = k φ i M ..^ N P i < P i + 1 φ k M ..^ N P k < P k + 1
208 207 5 chvarvv φ k M ..^ N P k < P k + 1
209 74 202 208 syl2anc φ k M + 1 ..^ N P k < P k + 1
210 100 121 209 ltled φ k M + 1 ..^ N P k P k + 1
211 iccintsng P M * P k * P k + 1 * P M P k P k P k + 1 P M P k P k P k + 1 = P k
212 73 101 122 199 210 211 syl32anc φ k M + 1 ..^ N P M P k P k P k + 1 = P k
213 212 fveq2d φ k M + 1 ..^ N vol * P M P k P k P k + 1 = vol * P k
214 ovolsn P k vol * P k = 0
215 100 214 syl φ k M + 1 ..^ N vol * P k = 0
216 213 215 eqtrd φ k M + 1 ..^ N vol * P M P k P k P k + 1 = 0
217 60 61 216 syl2anc k M + 1 ..^ N φ t P M P k A 𝐿 1 φ vol * P M P k P k P k + 1 = 0
218 72 121 100 199 210 eliccd φ k M + 1 ..^ N P k P M P k + 1
219 72 121 218 3jca φ k M + 1 ..^ N P M P k + 1 P k P M P k + 1
220 60 61 219 syl2anc k M + 1 ..^ N φ t P M P k A 𝐿 1 φ P M P k + 1 P k P M P k + 1
221 iccsplit P M P k + 1 P k P M P k + 1 P M P k + 1 = P M P k P k P k + 1
222 220 221 syl k M + 1 ..^ N φ t P M P k A 𝐿 1 φ P M P k + 1 = P M P k P k P k + 1
223 simpl3 k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k + 1 φ
224 simpl1 k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k + 1 k M + 1 ..^ N
225 simpr k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k + 1 t P M P k + 1
226 simp1 φ k M + 1 ..^ N t P M P k + 1 φ
227 eliccxr t P M P k + 1 t *
228 227 3ad2ant3 φ k M + 1 ..^ N t P M P k + 1 t *
229 71 rexrd φ P M *
230 229 3ad2ant1 φ k M + 1 ..^ N t P M P k + 1 P M *
231 122 3adant3 φ k M + 1 ..^ N t P M P k + 1 P k + 1 *
232 simp3 φ k M + 1 ..^ N t P M P k + 1 t P M P k + 1
233 iccgelb P M * P k + 1 * t P M P k + 1 P M t
234 230 231 232 233 syl3anc φ k M + 1 ..^ N t P M P k + 1 P M t
235 72 121 jca φ k M + 1 ..^ N P M P k + 1
236 235 3adant3 φ k M + 1 ..^ N t P M P k + 1 P M P k + 1
237 iccssre P M P k + 1 P M P k + 1
238 237 sseld P M P k + 1 t P M P k + 1 t
239 236 232 238 sylc φ k M + 1 ..^ N t P M P k + 1 t
240 121 3adant3 φ k M + 1 ..^ N t P M P k + 1 P k + 1
241 2 10 10 63 14 elfzd φ N M N
242 241 ancli φ φ N M N
243 eleq1 i = N i M N N M N
244 243 anbi2d i = N φ i M N φ N M N
245 fveq2 i = N P i = P N
246 245 eleq1d i = N P i P N
247 244 246 imbi12d i = N φ i M N P i φ N M N P N
248 247 4 vtoclg N φ N M N P N
249 10 242 248 sylc φ P N
250 249 3ad2ant1 φ k M + 1 ..^ N t P M P k + 1 P N
251 elicc1 P M * P k + 1 * t P M P k + 1 t * P M t t P k + 1
252 230 231 251 syl2anc φ k M + 1 ..^ N t P M P k + 1 t P M P k + 1 t * P M t t P k + 1
253 232 252 mpbid φ k M + 1 ..^ N t P M P k + 1 t * P M t t P k + 1
254 253 simp3d φ k M + 1 ..^ N t P M P k + 1 t P k + 1
255 elfzop1le2 k M + 1 ..^ N k + 1 N
256 75 peano2zd k M + 1 ..^ N k + 1
257 eluz k + 1 N N k + 1 k + 1 N
258 256 158 257 syl2anc k M + 1 ..^ N N k + 1 k + 1 N
259 255 258 mpbird k M + 1 ..^ N N k + 1
260 259 adantl φ k M + 1 ..^ N N k + 1
261 simpll φ k M + 1 ..^ N i k + 1 N φ
262 elfzelz i k + 1 N i
263 262 adantl φ k M + 1 ..^ N i k + 1 N i
264 261 38 syl φ k M + 1 ..^ N i k + 1 N M
265 263 zred φ k M + 1 ..^ N i k + 1 N i
266 78 adantr φ k M + 1 ..^ N i k + 1 N k
267 83 adantr φ k M + 1 ..^ N i k + 1 N M < k
268 155 adantr k M + 1 ..^ N i k + 1 N k
269 1red k M + 1 ..^ N i k + 1 N 1
270 268 269 readdcld k M + 1 ..^ N i k + 1 N k + 1
271 262 zred i k + 1 N i
272 271 adantl k M + 1 ..^ N i k + 1 N i
273 268 ltp1d k M + 1 ..^ N i k + 1 N k < k + 1
274 elfzle1 i k + 1 N k + 1 i
275 274 adantl k M + 1 ..^ N i k + 1 N k + 1 i
276 268 270 272 273 275 ltletrd k M + 1 ..^ N i k + 1 N k < i
277 276 adantll φ k M + 1 ..^ N i k + 1 N k < i
278 264 266 265 267 277 lttrd φ k M + 1 ..^ N i k + 1 N M < i
279 264 265 278 ltled φ k M + 1 ..^ N i k + 1 N M i
280 elfzle2 i k + 1 N i N
281 280 adantl φ k M + 1 ..^ N i k + 1 N i N
282 261 89 139 3syl φ k M + 1 ..^ N i k + 1 N i M N i M i i N
283 263 279 281 282 mpbir3and φ k M + 1 ..^ N i k + 1 N i M N
284 261 283 4 syl2anc φ k M + 1 ..^ N i k + 1 N P i
285 simpll φ k M + 1 ..^ N i k + 1 N 1 φ
286 elfzelz i k + 1 N 1 i
287 286 adantl φ k M + 1 ..^ N i k + 1 N 1 i
288 285 38 syl φ k M + 1 ..^ N i k + 1 N 1 M
289 287 zred φ k M + 1 ..^ N i k + 1 N 1 i
290 78 adantr φ k M + 1 ..^ N i k + 1 N 1 k
291 83 adantr φ k M + 1 ..^ N i k + 1 N 1 M < k
292 155 adantr k M + 1 ..^ N i k + 1 N 1 k
293 1red k M + 1 ..^ N i k + 1 N 1 1
294 292 293 readdcld k M + 1 ..^ N i k + 1 N 1 k + 1
295 286 zred i k + 1 N 1 i
296 295 adantl k M + 1 ..^ N i k + 1 N 1 i
297 292 ltp1d k M + 1 ..^ N i k + 1 N 1 k < k + 1
298 elfzle1 i k + 1 N 1 k + 1 i
299 298 adantl k M + 1 ..^ N i k + 1 N 1 k + 1 i
300 292 294 296 297 299 ltletrd k M + 1 ..^ N i k + 1 N 1 k < i
301 300 adantll φ k M + 1 ..^ N i k + 1 N 1 k < i
302 288 290 289 291 301 lttrd φ k M + 1 ..^ N i k + 1 N 1 M < i
303 288 289 302 ltled φ k M + 1 ..^ N i k + 1 N 1 M i
304 295 adantl φ i k + 1 N 1 i
305 13 adantr φ i k + 1 N 1 N
306 1red φ i k + 1 N 1 1
307 305 306 resubcld φ i k + 1 N 1 N 1
308 elfzle2 i k + 1 N 1 i N 1
309 308 adantl φ i k + 1 N 1 i N 1
310 305 ltm1d φ i k + 1 N 1 N 1 < N
311 304 307 305 309 310 lelttrd φ i k + 1 N 1 i < N
312 304 305 311 ltled φ i k + 1 N 1 i N
313 312 adantlr φ k M + 1 ..^ N i k + 1 N 1 i N
314 285 89 139 3syl φ k M + 1 ..^ N i k + 1 N 1 i M N i M i i N
315 287 303 313 314 mpbir3and φ k M + 1 ..^ N i k + 1 N 1 i M N
316 285 315 4 syl2anc φ k M + 1 ..^ N i k + 1 N 1 P i
317 287 peano2zd φ k M + 1 ..^ N i k + 1 N 1 i + 1
318 317 zred φ k M + 1 ..^ N i k + 1 N 1 i + 1
319 296 293 readdcld k M + 1 ..^ N i k + 1 N 1 i + 1
320 292 296 300 ltled k M + 1 ..^ N i k + 1 N 1 k i
321 292 296 293 320 leadd1dd k M + 1 ..^ N i k + 1 N 1 k + 1 i + 1
322 292 294 319 297 321 ltletrd k M + 1 ..^ N i k + 1 N 1 k < i + 1
323 322 adantll φ k M + 1 ..^ N i k + 1 N 1 k < i + 1
324 288 290 318 291 323 lttrd φ k M + 1 ..^ N i k + 1 N 1 M < i + 1
325 288 318 324 ltled φ k M + 1 ..^ N i k + 1 N 1 M i + 1
326 286 10 179 syl2anr φ i k + 1 N 1 i < N i + 1 N
327 311 326 mpbid φ i k + 1 N 1 i + 1 N
328 327 adantlr φ k M + 1 ..^ N i k + 1 N 1 i + 1 N
329 285 89 182 3syl φ k M + 1 ..^ N i k + 1 N 1 i + 1 M N i + 1 M i + 1 i + 1 N
330 317 325 328 329 mpbir3and φ k M + 1 ..^ N i k + 1 N 1 i + 1 M N
331 285 330 jca φ k M + 1 ..^ N i k + 1 N 1 φ i + 1 M N
332 330 331 191 sylc φ k M + 1 ..^ N i k + 1 N 1 P i + 1
333 285 2 syl φ k M + 1 ..^ N i k + 1 N 1 M
334 eluz M i i M M i
335 333 287 334 syl2anc φ k M + 1 ..^ N i k + 1 N 1 i M M i
336 303 335 mpbird φ k M + 1 ..^ N i k + 1 N 1 i M
337 285 3 9 3syl φ k M + 1 ..^ N i k + 1 N 1 N
338 311 adantlr φ k M + 1 ..^ N i k + 1 N 1 i < N
339 336 337 338 195 syl3anbrc φ k M + 1 ..^ N i k + 1 N 1 i M ..^ N
340 285 339 5 syl2anc φ k M + 1 ..^ N i k + 1 N 1 P i < P i + 1
341 316 332 340 ltled φ k M + 1 ..^ N i k + 1 N 1 P i P i + 1
342 260 284 341 monoord φ k M + 1 ..^ N P k + 1 P N
343 342 3adant3 φ k M + 1 ..^ N t P M P k + 1 P k + 1 P N
344 239 240 250 254 343 letrd φ k M + 1 ..^ N t P M P k + 1 t P N
345 250 rexrd φ k M + 1 ..^ N t P M P k + 1 P N *
346 elicc1 P M * P N * t P M P N t * P M t t P N
347 230 345 346 syl2anc φ k M + 1 ..^ N t P M P k + 1 t P M P N t * P M t t P N
348 228 234 344 347 mpbir3and φ k M + 1 ..^ N t P M P k + 1 t P M P N
349 226 348 6 syl2anc φ k M + 1 ..^ N t P M P k + 1 A
350 223 224 225 349 syl3anc k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k + 1 A
351 simp2 k M + 1 ..^ N φ t P M P k A 𝐿 1 φ φ t P M P k A 𝐿 1
352 60 351 mpd k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k A 𝐿 1
353 60 61 jca k M + 1 ..^ N φ t P M P k A 𝐿 1 φ φ k M + 1 ..^ N
354 74 202 jca φ k M + 1 ..^ N φ k M ..^ N
355 96 205 oveq12d i = k P i P i + 1 = P k P k + 1
356 355 mpteq1d i = k t P i P i + 1 A = t P k P k + 1 A
357 356 eleq1d i = k t P i P i + 1 A 𝐿 1 t P k P k + 1 A 𝐿 1
358 204 357 imbi12d i = k φ i M ..^ N t P i P i + 1 A 𝐿 1 φ k M ..^ N t P k P k + 1 A 𝐿 1
359 358 7 chvarvv φ k M ..^ N t P k P k + 1 A 𝐿 1
360 353 354 359 3syl k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P k P k + 1 A 𝐿 1
361 59 217 222 350 352 360 iblsplitf k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k + 1 A 𝐿 1
362 361 3exp k M + 1 ..^ N φ t P M P k A 𝐿 1 φ t P M P k + 1 A 𝐿 1
363 20 25 30 35 54 362 fzind2 N M + 1 N φ t P M P N A 𝐿 1
364 15 363 mpcom φ t P M P N A 𝐿 1