Metamath Proof Explorer


Theorem iblss

Description: A subset of an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses iblss.1 φ A B
iblss.2 φ A dom vol
iblss.3 φ x B C V
iblss.4 φ x B C 𝐿 1
Assertion iblss φ x A C 𝐿 1

Proof

Step Hyp Ref Expression
1 iblss.1 φ A B
2 iblss.2 φ A dom vol
3 iblss.3 φ x B C V
4 iblss.4 φ x B C 𝐿 1
5 1 resmptd φ x B C A = x A C
6 iblmbf x B C 𝐿 1 x B C MblFn
7 4 6 syl φ x B C MblFn
8 mbfres x B C MblFn A dom vol x B C A MblFn
9 7 2 8 syl2anc φ x B C A MblFn
10 5 9 eqeltrrd φ x A C MblFn
11 ifan if x A 0 C i k C i k 0 = if x A if 0 C i k C i k 0 0
12 1 sselda φ x A x B
13 12 ad4ant14 φ k 0 3 x x A x B
14 7 3 mbfmptcl φ x B C
15 14 ad4ant14 φ k 0 3 x x B C
16 ax-icn i
17 ine0 i 0
18 elfzelz k 0 3 k
19 18 ad3antlr φ k 0 3 x x B k
20 expclz i i 0 k i k
21 16 17 19 20 mp3an12i φ k 0 3 x x B i k
22 expne0i i i 0 k i k 0
23 16 17 19 22 mp3an12i φ k 0 3 x x B i k 0
24 15 21 23 divcld φ k 0 3 x x B C i k
25 24 recld φ k 0 3 x x B C i k
26 0re 0
27 ifcl C i k 0 if 0 C i k C i k 0
28 25 26 27 sylancl φ k 0 3 x x B if 0 C i k C i k 0
29 28 rexrd φ k 0 3 x x B if 0 C i k C i k 0 *
30 max1 0 C i k 0 if 0 C i k C i k 0
31 26 25 30 sylancr φ k 0 3 x x B 0 if 0 C i k C i k 0
32 elxrge0 if 0 C i k C i k 0 0 +∞ if 0 C i k C i k 0 * 0 if 0 C i k C i k 0
33 29 31 32 sylanbrc φ k 0 3 x x B if 0 C i k C i k 0 0 +∞
34 13 33 syldan φ k 0 3 x x A if 0 C i k C i k 0 0 +∞
35 0e0iccpnf 0 0 +∞
36 35 a1i φ k 0 3 x ¬ x A 0 0 +∞
37 34 36 ifclda φ k 0 3 x if x A if 0 C i k C i k 0 0 0 +∞
38 11 37 eqeltrid φ k 0 3 x if x A 0 C i k C i k 0 0 +∞
39 38 fmpttd φ k 0 3 x if x A 0 C i k C i k 0 : 0 +∞
40 eqidd φ x if x B 0 C i k C i k 0 = x if x B 0 C i k C i k 0
41 eqidd φ x B C i k = C i k
42 40 41 4 3 iblitg φ k 2 x if x B 0 C i k C i k 0
43 18 42 sylan2 φ k 0 3 2 x if x B 0 C i k C i k 0
44 ifan if x B 0 C i k C i k 0 = if x B if 0 C i k C i k 0 0
45 35 a1i φ k 0 3 x ¬ x B 0 0 +∞
46 33 45 ifclda φ k 0 3 x if x B if 0 C i k C i k 0 0 0 +∞
47 44 46 eqeltrid φ k 0 3 x if x B 0 C i k C i k 0 0 +∞
48 47 fmpttd φ k 0 3 x if x B 0 C i k C i k 0 : 0 +∞
49 28 leidd φ k 0 3 x x B if 0 C i k C i k 0 if 0 C i k C i k 0
50 breq1 if 0 C i k C i k 0 = if x A if 0 C i k C i k 0 0 if 0 C i k C i k 0 if 0 C i k C i k 0 if x A if 0 C i k C i k 0 0 if 0 C i k C i k 0
51 breq1 0 = if x A if 0 C i k C i k 0 0 0 if 0 C i k C i k 0 if x A if 0 C i k C i k 0 0 if 0 C i k C i k 0
52 50 51 ifboth if 0 C i k C i k 0 if 0 C i k C i k 0 0 if 0 C i k C i k 0 if x A if 0 C i k C i k 0 0 if 0 C i k C i k 0
53 49 31 52 syl2anc φ k 0 3 x x B if x A if 0 C i k C i k 0 0 if 0 C i k C i k 0
54 iftrue x B if x B if 0 C i k C i k 0 0 = if 0 C i k C i k 0
55 54 adantl φ k 0 3 x x B if x B if 0 C i k C i k 0 0 = if 0 C i k C i k 0
56 53 55 breqtrrd φ k 0 3 x x B if x A if 0 C i k C i k 0 0 if x B if 0 C i k C i k 0 0
57 0le0 0 0
58 57 a1i φ k 0 3 x ¬ x B 0 0
59 13 stoic1a φ k 0 3 x ¬ x B ¬ x A
60 59 iffalsed φ k 0 3 x ¬ x B if x A if 0 C i k C i k 0 0 = 0
61 iffalse ¬ x B if x B if 0 C i k C i k 0 0 = 0
62 61 adantl φ k 0 3 x ¬ x B if x B if 0 C i k C i k 0 0 = 0
63 58 60 62 3brtr4d φ k 0 3 x ¬ x B if x A if 0 C i k C i k 0 0 if x B if 0 C i k C i k 0 0
64 56 63 pm2.61dan φ k 0 3 x if x A if 0 C i k C i k 0 0 if x B if 0 C i k C i k 0 0
65 64 11 44 3brtr4g φ k 0 3 x if x A 0 C i k C i k 0 if x B 0 C i k C i k 0
66 65 ralrimiva φ k 0 3 x if x A 0 C i k C i k 0 if x B 0 C i k C i k 0
67 reex V
68 67 a1i φ k 0 3 V
69 eqidd φ k 0 3 x if x A 0 C i k C i k 0 = x if x A 0 C i k C i k 0
70 eqidd φ k 0 3 x if x B 0 C i k C i k 0 = x if x B 0 C i k C i k 0
71 68 38 47 69 70 ofrfval2 φ k 0 3 x if x A 0 C i k C i k 0 f x if x B 0 C i k C i k 0 x if x A 0 C i k C i k 0 if x B 0 C i k C i k 0
72 66 71 mpbird φ k 0 3 x if x A 0 C i k C i k 0 f x if x B 0 C i k C i k 0
73 itg2le x if x A 0 C i k C i k 0 : 0 +∞ x if x B 0 C i k C i k 0 : 0 +∞ x if x A 0 C i k C i k 0 f x if x B 0 C i k C i k 0 2 x if x A 0 C i k C i k 0 2 x if x B 0 C i k C i k 0
74 39 48 72 73 syl3anc φ k 0 3 2 x if x A 0 C i k C i k 0 2 x if x B 0 C i k C i k 0
75 itg2lecl x if x A 0 C i k C i k 0 : 0 +∞ 2 x if x B 0 C i k C i k 0 2 x if x A 0 C i k C i k 0 2 x if x B 0 C i k C i k 0 2 x if x A 0 C i k C i k 0
76 39 43 74 75 syl3anc φ k 0 3 2 x if x A 0 C i k C i k 0
77 76 ralrimiva φ k 0 3 2 x if x A 0 C i k C i k 0
78 eqidd φ x if x A 0 C i k C i k 0 = x if x A 0 C i k C i k 0
79 eqidd φ x A C i k = C i k
80 12 14 syldan φ x A C
81 78 79 80 isibl2 φ x A C 𝐿 1 x A C MblFn k 0 3 2 x if x A 0 C i k C i k 0
82 10 77 81 mpbir2and φ x A C 𝐿 1