Metamath Proof Explorer


Theorem iblsub

Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φ x A B V
itgadd.2 φ x A B 𝐿 1
itgadd.3 φ x A C V
itgadd.4 φ x A C 𝐿 1
Assertion iblsub φ x A B C 𝐿 1

Proof

Step Hyp Ref Expression
1 itgadd.1 φ x A B V
2 itgadd.2 φ x A B 𝐿 1
3 itgadd.3 φ x A C V
4 itgadd.4 φ x A C 𝐿 1
5 iblmbf x A B 𝐿 1 x A B MblFn
6 2 5 syl φ x A B MblFn
7 6 1 mbfmptcl φ x A B
8 iblmbf x A C 𝐿 1 x A C MblFn
9 4 8 syl φ x A C MblFn
10 9 3 mbfmptcl φ x A C
11 7 10 negsubd φ x A B + C = B C
12 11 mpteq2dva φ x A B + C = x A B C
13 10 negcld φ x A C
14 3 4 iblneg φ x A C 𝐿 1
15 7 2 13 14 ibladd φ x A B + C 𝐿 1
16 12 15 eqeltrrd φ x A B C 𝐿 1