Metamath Proof Explorer


Theorem iblulm

Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses itgulm.z Z = M
itgulm.m φ M
itgulm.f φ F : Z 𝐿 1
itgulm.u φ F u S G
itgulm.s φ vol S
Assertion iblulm φ G 𝐿 1

Proof

Step Hyp Ref Expression
1 itgulm.z Z = M
2 itgulm.m φ M
3 itgulm.f φ F : Z 𝐿 1
4 itgulm.u φ F u S G
5 itgulm.s φ vol S
6 3 ffnd φ F Fn Z
7 ulmf2 F Fn Z F u S G F : Z S
8 6 4 7 syl2anc φ F : Z S
9 eqidd φ k Z x S F k x = F k x
10 eqidd φ x S G x = G x
11 1rp 1 +
12 11 a1i φ 1 +
13 1 2 8 9 10 4 12 ulmi φ j Z k j x S F k x G x < 1
14 1 r19.2uz j Z k j x S F k x G x < 1 k Z x S F k x G x < 1
15 13 14 syl φ k Z x S F k x G x < 1
16 ulmcl F u S G G : S
17 4 16 syl φ G : S
18 17 adantr φ k Z x S F k x G x < 1 G : S
19 18 feqmptd φ k Z x S F k x G x < 1 G = z S G z
20 8 ffvelrnda φ k Z F k S
21 elmapi F k S F k : S
22 20 21 syl φ k Z F k : S
23 22 adantrr φ k Z x S F k x G x < 1 F k : S
24 23 ffvelrnda φ k Z x S F k x G x < 1 z S F k z
25 18 ffvelrnda φ k Z x S F k x G x < 1 z S G z
26 24 25 nncand φ k Z x S F k x G x < 1 z S F k z F k z G z = G z
27 26 mpteq2dva φ k Z x S F k x G x < 1 z S F k z F k z G z = z S G z
28 19 27 eqtr4d φ k Z x S F k x G x < 1 G = z S F k z F k z G z
29 23 feqmptd φ k Z x S F k x G x < 1 F k = z S F k z
30 3 ffvelrnda φ k Z F k 𝐿 1
31 30 adantrr φ k Z x S F k x G x < 1 F k 𝐿 1
32 29 31 eqeltrrd φ k Z x S F k x G x < 1 z S F k z 𝐿 1
33 24 25 subcld φ k Z x S F k x G x < 1 z S F k z G z
34 ulmscl F u S G S V
35 4 34 syl φ S V
36 35 adantr φ k Z x S F k x G x < 1 S V
37 36 24 25 29 19 offval2 φ k Z x S F k x G x < 1 F k f G = z S F k z G z
38 iblmbf F k 𝐿 1 F k MblFn
39 31 38 syl φ k Z x S F k x G x < 1 F k MblFn
40 iblmbf x 𝐿 1 x MblFn
41 40 ssriv 𝐿 1 MblFn
42 fss F : Z 𝐿 1 𝐿 1 MblFn F : Z MblFn
43 3 41 42 sylancl φ F : Z MblFn
44 1 2 43 4 mbfulm φ G MblFn
45 44 adantr φ k Z x S F k x G x < 1 G MblFn
46 39 45 mbfsub φ k Z x S F k x G x < 1 F k f G MblFn
47 37 46 eqeltrrd φ k Z x S F k x G x < 1 z S F k z G z MblFn
48 eqid z S F k z G z = z S F k z G z
49 48 33 dmmptd φ k Z x S F k x G x < 1 dom z S F k z G z = S
50 49 fveq2d φ k Z x S F k x G x < 1 vol dom z S F k z G z = vol S
51 5 adantr φ k Z x S F k x G x < 1 vol S
52 50 51 eqeltrd φ k Z x S F k x G x < 1 vol dom z S F k z G z
53 1re 1
54 22 ffvelrnda φ k Z x S F k x
55 17 adantr φ k Z G : S
56 55 ffvelrnda φ k Z x S G x
57 54 56 subcld φ k Z x S F k x G x
58 57 abscld φ k Z x S F k x G x
59 ltle F k x G x 1 F k x G x < 1 F k x G x 1
60 58 53 59 sylancl φ k Z x S F k x G x < 1 F k x G x 1
61 fveq2 z = x F k z = F k x
62 fveq2 z = x G z = G x
63 61 62 oveq12d z = x F k z G z = F k x G x
64 ovex F k x G x V
65 63 48 64 fvmpt x S z S F k z G z x = F k x G x
66 65 adantl φ k Z x S z S F k z G z x = F k x G x
67 66 fveq2d φ k Z x S z S F k z G z x = F k x G x
68 67 breq1d φ k Z x S z S F k z G z x 1 F k x G x 1
69 60 68 sylibrd φ k Z x S F k x G x < 1 z S F k z G z x 1
70 69 ralimdva φ k Z x S F k x G x < 1 x S z S F k z G z x 1
71 70 impr φ k Z x S F k x G x < 1 x S z S F k z G z x 1
72 49 raleqdv φ k Z x S F k x G x < 1 x dom z S F k z G z z S F k z G z x 1 x S z S F k z G z x 1
73 71 72 mpbird φ k Z x S F k x G x < 1 x dom z S F k z G z z S F k z G z x 1
74 brralrspcev 1 x dom z S F k z G z z S F k z G z x 1 r x dom z S F k z G z z S F k z G z x r
75 53 73 74 sylancr φ k Z x S F k x G x < 1 r x dom z S F k z G z z S F k z G z x r
76 bddibl z S F k z G z MblFn vol dom z S F k z G z r x dom z S F k z G z z S F k z G z x r z S F k z G z 𝐿 1
77 47 52 75 76 syl3anc φ k Z x S F k x G x < 1 z S F k z G z 𝐿 1
78 24 32 33 77 iblsub φ k Z x S F k x G x < 1 z S F k z F k z G z 𝐿 1
79 28 78 eqeltrd φ k Z x S F k x G x < 1 G 𝐿 1
80 15 79 rexlimddv φ G 𝐿 1