Metamath Proof Explorer


Theorem icccld

Description: Closed intervals are closed sets of the standard topology on RR . (Contributed by FL, 14-Sep-2007)

Ref Expression
Assertion icccld A B A B Clsd topGen ran .

Proof

Step Hyp Ref Expression
1 difreicc A B A B = −∞ A B +∞
2 retop topGen ran . Top
3 iooretop −∞ A topGen ran .
4 iooretop B +∞ topGen ran .
5 unopn topGen ran . Top −∞ A topGen ran . B +∞ topGen ran . −∞ A B +∞ topGen ran .
6 2 3 4 5 mp3an −∞ A B +∞ topGen ran .
7 1 6 eqeltrdi A B A B topGen ran .
8 iccssre A B A B
9 uniretop = topGen ran .
10 9 iscld2 topGen ran . Top A B A B Clsd topGen ran . A B topGen ran .
11 2 8 10 sylancr A B A B Clsd topGen ran . A B topGen ran .
12 7 11 mpbird A B A B Clsd topGen ran .