| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icccmp.1 |
|
| 2 |
|
icccmp.2 |
|
| 3 |
|
icccmp.3 |
|
| 4 |
|
icccmp.4 |
|
| 5 |
|
icccmp.5 |
|
| 6 |
|
icccmp.6 |
|
| 7 |
|
icccmp.7 |
|
| 8 |
|
icccmp.8 |
|
| 9 |
|
icccmp.9 |
|
| 10 |
5
|
rexrd |
|
| 11 |
6
|
rexrd |
|
| 12 |
|
lbicc2 |
|
| 13 |
10 11 7 12
|
syl3anc |
|
| 14 |
9 13
|
sseldd |
|
| 15 |
|
eluni2 |
|
| 16 |
14 15
|
sylib |
|
| 17 |
|
snssi |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
|
snex |
|
| 20 |
19
|
elpw |
|
| 21 |
18 20
|
sylibr |
|
| 22 |
|
snfi |
|
| 23 |
22
|
a1i |
|
| 24 |
21 23
|
elind |
|
| 25 |
10
|
adantr |
|
| 26 |
|
iccid |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
snssi |
|
| 29 |
28
|
ad2antll |
|
| 30 |
27 29
|
eqsstrd |
|
| 31 |
|
unieq |
|
| 32 |
|
unisnv |
|
| 33 |
31 32
|
eqtrdi |
|
| 34 |
33
|
sseq2d |
|
| 35 |
34
|
rspcev |
|
| 36 |
24 30 35
|
syl2anc |
|
| 37 |
16 36
|
rexlimddv |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
sseq1d |
|
| 40 |
39
|
rexbidv |
|
| 41 |
40 4
|
elrab2 |
|
| 42 |
13 37 41
|
sylanbrc |
|
| 43 |
4
|
ssrab3 |
|
| 44 |
43
|
sseli |
|
| 45 |
|
elicc2 |
|
| 46 |
5 6 45
|
syl2anc |
|
| 47 |
46
|
biimpa |
|
| 48 |
47
|
simp3d |
|
| 49 |
44 48
|
sylan2 |
|
| 50 |
49
|
ralrimiva |
|
| 51 |
42 50
|
jca |
|