Description: Lemma for icccmp . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | |
|
| icccmp.2 | |
||
| icccmp.3 | |
||
| icccmp.4 | |
||
| icccmp.5 | |
||
| icccmp.6 | |
||
| icccmp.7 | |
||
| icccmp.8 | |
||
| icccmp.9 | |
||
| Assertion | icccmplem1 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | |
|
| 2 | icccmp.2 | |
|
| 3 | icccmp.3 | |
|
| 4 | icccmp.4 | |
|
| 5 | icccmp.5 | |
|
| 6 | icccmp.6 | |
|
| 7 | icccmp.7 | |
|
| 8 | icccmp.8 | |
|
| 9 | icccmp.9 | |
|
| 10 | 5 | rexrd | |
| 11 | 6 | rexrd | |
| 12 | lbicc2 | |
|
| 13 | 10 11 7 12 | syl3anc | |
| 14 | 9 13 | sseldd | |
| 15 | eluni2 | |
|
| 16 | 14 15 | sylib | |
| 17 | snssi | |
|
| 18 | 17 | ad2antrl | |
| 19 | snex | |
|
| 20 | 19 | elpw | |
| 21 | 18 20 | sylibr | |
| 22 | snfi | |
|
| 23 | 22 | a1i | |
| 24 | 21 23 | elind | |
| 25 | 10 | adantr | |
| 26 | iccid | |
|
| 27 | 25 26 | syl | |
| 28 | snssi | |
|
| 29 | 28 | ad2antll | |
| 30 | 27 29 | eqsstrd | |
| 31 | unieq | |
|
| 32 | unisnv | |
|
| 33 | 31 32 | eqtrdi | |
| 34 | 33 | sseq2d | |
| 35 | 34 | rspcev | |
| 36 | 24 30 35 | syl2anc | |
| 37 | 16 36 | rexlimddv | |
| 38 | oveq2 | |
|
| 39 | 38 | sseq1d | |
| 40 | 39 | rexbidv | |
| 41 | 40 4 | elrab2 | |
| 42 | 13 37 41 | sylanbrc | |
| 43 | 4 | ssrab3 | |
| 44 | 43 | sseli | |
| 45 | elicc2 | |
|
| 46 | 5 6 45 | syl2anc | |
| 47 | 46 | biimpa | |
| 48 | 47 | simp3d | |
| 49 | 44 48 | sylan2 | |
| 50 | 49 | ralrimiva | |
| 51 | 42 50 | jca | |