Step |
Hyp |
Ref |
Expression |
1 |
|
icccntr.1 |
|
2 |
|
icccntr.2 |
|
3 |
|
simpl |
|
4 |
|
rerpdivcl |
|
5 |
3 4
|
2thd |
|
6 |
5
|
adantl |
|
7 |
|
elrp |
|
8 |
|
lediv1 |
|
9 |
7 8
|
syl3an3b |
|
10 |
9
|
3expb |
|
11 |
10
|
adantlr |
|
12 |
1
|
breq1i |
|
13 |
11 12
|
bitrdi |
|
14 |
|
lediv1 |
|
15 |
7 14
|
syl3an3b |
|
16 |
15
|
3expb |
|
17 |
16
|
an12s |
|
18 |
17
|
adantll |
|
19 |
2
|
breq2i |
|
20 |
18 19
|
bitrdi |
|
21 |
6 13 20
|
3anbi123d |
|
22 |
|
elicc2 |
|
23 |
22
|
adantr |
|
24 |
|
rerpdivcl |
|
25 |
1 24
|
eqeltrrid |
|
26 |
|
rerpdivcl |
|
27 |
2 26
|
eqeltrrid |
|
28 |
|
elicc2 |
|
29 |
25 27 28
|
syl2an |
|
30 |
29
|
anandirs |
|
31 |
30
|
adantrl |
|
32 |
21 23 31
|
3bitr4d |
|