| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icccntr.1 |  | 
						
							| 2 |  | icccntr.2 |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 |  | rerpdivcl |  | 
						
							| 5 | 3 4 | 2thd |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | elrp |  | 
						
							| 8 |  | lediv1 |  | 
						
							| 9 | 7 8 | syl3an3b |  | 
						
							| 10 | 9 | 3expb |  | 
						
							| 11 | 10 | adantlr |  | 
						
							| 12 | 1 | breq1i |  | 
						
							| 13 | 11 12 | bitrdi |  | 
						
							| 14 |  | lediv1 |  | 
						
							| 15 | 7 14 | syl3an3b |  | 
						
							| 16 | 15 | 3expb |  | 
						
							| 17 | 16 | an12s |  | 
						
							| 18 | 17 | adantll |  | 
						
							| 19 | 2 | breq2i |  | 
						
							| 20 | 18 19 | bitrdi |  | 
						
							| 21 | 6 13 20 | 3anbi123d |  | 
						
							| 22 |  | elicc2 |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | rerpdivcl |  | 
						
							| 25 | 1 24 | eqeltrrid |  | 
						
							| 26 |  | rerpdivcl |  | 
						
							| 27 | 2 26 | eqeltrrid |  | 
						
							| 28 |  | elicc2 |  | 
						
							| 29 | 25 27 28 | syl2an |  | 
						
							| 30 | 29 | anandirs |  | 
						
							| 31 | 30 | adantrl |  | 
						
							| 32 | 21 23 31 | 3bitr4d |  |