Metamath Proof Explorer


Theorem iccconn

Description: A closed interval is connected. (Contributed by Jeff Hankins, 17-Aug-2009)

Ref Expression
Assertion iccconn A B topGen ran . 𝑡 A B Conn

Proof

Step Hyp Ref Expression
1 iccss2 x A B y A B x y A B
2 1 rgen2 x A B y A B x y A B
3 iccssre A B A B
4 reconn A B topGen ran . 𝑡 A B Conn x A B y A B x y A B
5 3 4 syl A B topGen ran . 𝑡 A B Conn x A B y A B x y A B
6 2 5 mpbiri A B topGen ran . 𝑡 A B Conn