Step |
Hyp |
Ref |
Expression |
1 |
|
iccss2 |
|
2 |
1
|
adantl |
|
3 |
2
|
3adantr3 |
|
4 |
3
|
adantr |
|
5 |
|
iccssre |
|
6 |
5
|
sselda |
|
7 |
6
|
adantrr |
|
8 |
5
|
sselda |
|
9 |
8
|
adantrl |
|
10 |
7 9
|
jca |
|
11 |
10
|
3adantr3 |
|
12 |
|
simpr3 |
|
13 |
11 12
|
jca |
|
14 |
|
lincmb01cmp |
|
15 |
14
|
ex |
|
16 |
15
|
3expa |
|
17 |
16
|
imp |
|
18 |
17
|
an32s |
|
19 |
13 18
|
sylan |
|
20 |
4 19
|
sseldd |
|
21 |
|
oveq2 |
|
22 |
21
|
oveq1d |
|
23 |
|
unitssre |
|
24 |
23
|
sseli |
|
25 |
24
|
recnd |
|
26 |
25
|
ad2antll |
|
27 |
8
|
recnd |
|
28 |
27
|
adantrr |
|
29 |
|
ax-1cn |
|
30 |
|
npcan |
|
31 |
29 30
|
mpan |
|
32 |
31
|
adantr |
|
33 |
32
|
oveq1d |
|
34 |
|
subcl |
|
35 |
29 34
|
mpan |
|
36 |
35
|
ancri |
|
37 |
|
adddir |
|
38 |
37
|
3expa |
|
39 |
36 38
|
sylan |
|
40 |
|
mulid2 |
|
41 |
40
|
adantl |
|
42 |
33 39 41
|
3eqtr3d |
|
43 |
26 28 42
|
syl2anc |
|
44 |
43
|
3adantr1 |
|
45 |
22 44
|
sylan9eqr |
|
46 |
|
simplr2 |
|
47 |
45 46
|
eqeltrd |
|
48 |
|
iccss2 |
|
49 |
48
|
adantl |
|
50 |
49
|
ancom2s |
|
51 |
50
|
3adantr3 |
|
52 |
51
|
adantr |
|
53 |
9 7
|
jca |
|
54 |
53
|
3adantr3 |
|
55 |
54 12
|
jca |
|
56 |
|
iirev |
|
57 |
23 56
|
sselid |
|
58 |
57
|
recnd |
|
59 |
|
recn |
|
60 |
|
mulcl |
|
61 |
58 59 60
|
syl2anr |
|
62 |
61
|
adantll |
|
63 |
|
recn |
|
64 |
|
mulcl |
|
65 |
25 63 64
|
syl2anr |
|
66 |
65
|
adantlr |
|
67 |
62 66
|
addcomd |
|
68 |
67
|
3adantl3 |
|
69 |
|
nncan |
|
70 |
29 69
|
mpan |
|
71 |
70
|
eqcomd |
|
72 |
71
|
oveq1d |
|
73 |
72
|
oveq1d |
|
74 |
25 73
|
syl |
|
75 |
74
|
adantl |
|
76 |
68 75
|
eqtrd |
|
77 |
|
lincmb01cmp |
|
78 |
56 77
|
sylan2 |
|
79 |
76 78
|
eqeltrd |
|
80 |
79
|
ex |
|
81 |
80
|
3expa |
|
82 |
81
|
imp |
|
83 |
82
|
an32s |
|
84 |
55 83
|
sylan |
|
85 |
52 84
|
sseldd |
|
86 |
7 9
|
lttri4d |
|
87 |
86
|
3adantr3 |
|
88 |
20 47 85 87
|
mpjao3dan |
|
89 |
88
|
ex |
|