Metamath Proof Explorer


Theorem icccvx

Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion icccvx A B C A B D A B T 0 1 1 T C + T D A B

Proof

Step Hyp Ref Expression
1 iccss2 C A B D A B C D A B
2 1 adantl A B C A B D A B C D A B
3 2 3adantr3 A B C A B D A B T 0 1 C D A B
4 3 adantr A B C A B D A B T 0 1 C < D C D A B
5 iccssre A B A B
6 5 sselda A B C A B C
7 6 adantrr A B C A B D A B C
8 5 sselda A B D A B D
9 8 adantrl A B C A B D A B D
10 7 9 jca A B C A B D A B C D
11 10 3adantr3 A B C A B D A B T 0 1 C D
12 simpr3 A B C A B D A B T 0 1 T 0 1
13 11 12 jca A B C A B D A B T 0 1 C D T 0 1
14 lincmb01cmp C D C < D T 0 1 1 T C + T D C D
15 14 ex C D C < D T 0 1 1 T C + T D C D
16 15 3expa C D C < D T 0 1 1 T C + T D C D
17 16 imp C D C < D T 0 1 1 T C + T D C D
18 17 an32s C D T 0 1 C < D 1 T C + T D C D
19 13 18 sylan A B C A B D A B T 0 1 C < D 1 T C + T D C D
20 4 19 sseldd A B C A B D A B T 0 1 C < D 1 T C + T D A B
21 oveq2 C = D 1 T C = 1 T D
22 21 oveq1d C = D 1 T C + T D = 1 T D + T D
23 unitssre 0 1
24 23 sseli T 0 1 T
25 24 recnd T 0 1 T
26 25 ad2antll A B D A B T 0 1 T
27 8 recnd A B D A B D
28 27 adantrr A B D A B T 0 1 D
29 ax-1cn 1
30 npcan 1 T 1 - T + T = 1
31 29 30 mpan T 1 - T + T = 1
32 31 adantr T D 1 - T + T = 1
33 32 oveq1d T D 1 - T + T D = 1 D
34 subcl 1 T 1 T
35 29 34 mpan T 1 T
36 35 ancri T 1 T T
37 adddir 1 T T D 1 - T + T D = 1 T D + T D
38 37 3expa 1 T T D 1 - T + T D = 1 T D + T D
39 36 38 sylan T D 1 - T + T D = 1 T D + T D
40 mulid2 D 1 D = D
41 40 adantl T D 1 D = D
42 33 39 41 3eqtr3d T D 1 T D + T D = D
43 26 28 42 syl2anc A B D A B T 0 1 1 T D + T D = D
44 43 3adantr1 A B C A B D A B T 0 1 1 T D + T D = D
45 22 44 sylan9eqr A B C A B D A B T 0 1 C = D 1 T C + T D = D
46 simplr2 A B C A B D A B T 0 1 C = D D A B
47 45 46 eqeltrd A B C A B D A B T 0 1 C = D 1 T C + T D A B
48 iccss2 D A B C A B D C A B
49 48 adantl A B D A B C A B D C A B
50 49 ancom2s A B C A B D A B D C A B
51 50 3adantr3 A B C A B D A B T 0 1 D C A B
52 51 adantr A B C A B D A B T 0 1 D < C D C A B
53 9 7 jca A B C A B D A B D C
54 53 3adantr3 A B C A B D A B T 0 1 D C
55 54 12 jca A B C A B D A B T 0 1 D C T 0 1
56 iirev T 0 1 1 T 0 1
57 23 56 sseldi T 0 1 1 T
58 57 recnd T 0 1 1 T
59 recn C C
60 mulcl 1 T C 1 T C
61 58 59 60 syl2anr C T 0 1 1 T C
62 61 adantll D C T 0 1 1 T C
63 recn D D
64 mulcl T D T D
65 25 63 64 syl2anr D T 0 1 T D
66 65 adantlr D C T 0 1 T D
67 62 66 addcomd D C T 0 1 1 T C + T D = T D + 1 T C
68 67 3adantl3 D C D < C T 0 1 1 T C + T D = T D + 1 T C
69 nncan 1 T 1 1 T = T
70 29 69 mpan T 1 1 T = T
71 70 eqcomd T T = 1 1 T
72 71 oveq1d T T D = 1 1 T D
73 72 oveq1d T T D + 1 T C = 1 1 T D + 1 T C
74 25 73 syl T 0 1 T D + 1 T C = 1 1 T D + 1 T C
75 74 adantl D C D < C T 0 1 T D + 1 T C = 1 1 T D + 1 T C
76 68 75 eqtrd D C D < C T 0 1 1 T C + T D = 1 1 T D + 1 T C
77 lincmb01cmp D C D < C 1 T 0 1 1 1 T D + 1 T C D C
78 56 77 sylan2 D C D < C T 0 1 1 1 T D + 1 T C D C
79 76 78 eqeltrd D C D < C T 0 1 1 T C + T D D C
80 79 ex D C D < C T 0 1 1 T C + T D D C
81 80 3expa D C D < C T 0 1 1 T C + T D D C
82 81 imp D C D < C T 0 1 1 T C + T D D C
83 82 an32s D C T 0 1 D < C 1 T C + T D D C
84 55 83 sylan A B C A B D A B T 0 1 D < C 1 T C + T D D C
85 52 84 sseldd A B C A B D A B T 0 1 D < C 1 T C + T D A B
86 7 9 lttri4d A B C A B D A B C < D C = D D < C
87 86 3adantr3 A B C A B D A B T 0 1 C < D C = D D < C
88 20 47 85 87 mpjao3dan A B C A B D A B T 0 1 1 T C + T D A B
89 88 ex A B C A B D A B T 0 1 1 T C + T D A B