Step |
Hyp |
Ref |
Expression |
1 |
|
iccdificc.a |
|
2 |
|
iccdificc.b |
|
3 |
|
iccdificc.c |
|
4 |
|
iccdificc.4 |
|
5 |
2
|
adantr |
|
6 |
3
|
adantr |
|
7 |
|
iccssxr |
|
8 |
|
eldifi |
|
9 |
7 8
|
sselid |
|
10 |
9
|
adantl |
|
11 |
1
|
ad2antrr |
|
12 |
5
|
adantr |
|
13 |
10
|
adantr |
|
14 |
1
|
adantr |
|
15 |
8
|
adantl |
|
16 |
|
iccgelb |
|
17 |
14 6 15 16
|
syl3anc |
|
18 |
17
|
adantr |
|
19 |
|
simpr |
|
20 |
10 5
|
xrlenltd |
|
21 |
20
|
adantr |
|
22 |
19 21
|
mpbird |
|
23 |
11 12 13 18 22
|
eliccxrd |
|
24 |
|
eldifn |
|
25 |
24
|
ad2antlr |
|
26 |
23 25
|
condan |
|
27 |
|
iccleub |
|
28 |
14 6 15 27
|
syl3anc |
|
29 |
5 6 10 26 28
|
eliocd |
|
30 |
29
|
ralrimiva |
|
31 |
|
dfss3 |
|
32 |
30 31
|
sylibr |
|
33 |
1
|
adantr |
|
34 |
3
|
adantr |
|
35 |
|
iocssxr |
|
36 |
|
id |
|
37 |
35 36
|
sselid |
|
38 |
37
|
adantl |
|
39 |
2
|
adantr |
|
40 |
4
|
adantr |
|
41 |
|
simpr |
|
42 |
|
iocgtlb |
|
43 |
39 34 41 42
|
syl3anc |
|
44 |
33 39 38 40 43
|
xrlelttrd |
|
45 |
33 38 44
|
xrltled |
|
46 |
|
iocleub |
|
47 |
39 34 41 46
|
syl3anc |
|
48 |
33 34 38 45 47
|
eliccxrd |
|
49 |
33 39 38 43
|
xrgtnelicc |
|
50 |
48 49
|
eldifd |
|
51 |
32 50
|
eqelssd |
|