Metamath Proof Explorer


Theorem iccdifioo

Description: If the open inverval is removed from the closed interval, only the bounds are left. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iccdifioo A * B * A B A B A B = A B

Proof

Step Hyp Ref Expression
1 prunioo A * B * A B A B A B = A B
2 uncom A B A B = A B A B
3 1 2 eqtr3di A * B * A B A B = A B A B
4 3 difeq1d A * B * A B A B A B = A B A B A B
5 difun2 A B A B A B = A B A B
6 5 a1i A * B * A B A B A B A B = A B A B
7 incom A B A B = A B A B
8 iooinlbub A B A B =
9 7 8 eqtr3i A B A B =
10 disj3 A B A B = A B = A B A B
11 9 10 mpbi A B = A B A B
12 11 eqcomi A B A B = A B
13 12 a1i A * B * A B A B A B = A B
14 4 6 13 3eqtrd A * B * A B A B A B = A B