Metamath Proof Explorer


Theorem iccdil

Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccdil.1 A R = C
iccdil.2 B R = D
Assertion iccdil A B X R + X A B X R C D

Proof

Step Hyp Ref Expression
1 iccdil.1 A R = C
2 iccdil.2 B R = D
3 simpl X R + X
4 rpre R + R
5 remulcl X R X R
6 4 5 sylan2 X R + X R
7 3 6 2thd X R + X X R
8 7 adantl A B X R + X X R
9 elrp R + R 0 < R
10 lemul1 A X R 0 < R A X A R X R
11 9 10 syl3an3b A X R + A X A R X R
12 11 3expb A X R + A X A R X R
13 12 adantlr A B X R + A X A R X R
14 1 breq1i A R X R C X R
15 13 14 bitrdi A B X R + A X C X R
16 lemul1 X B R 0 < R X B X R B R
17 9 16 syl3an3b X B R + X B X R B R
18 17 3expb X B R + X B X R B R
19 18 an12s B X R + X B X R B R
20 19 adantll A B X R + X B X R B R
21 2 breq2i X R B R X R D
22 20 21 bitrdi A B X R + X B X R D
23 8 15 22 3anbi123d A B X R + X A X X B X R C X R X R D
24 elicc2 A B X A B X A X X B
25 24 adantr A B X R + X A B X A X X B
26 remulcl A R A R
27 1 26 eqeltrrid A R C
28 remulcl B R B R
29 2 28 eqeltrrid B R D
30 elicc2 C D X R C D X R C X R X R D
31 27 29 30 syl2an A R B R X R C D X R C X R X R D
32 31 anandirs A B R X R C D X R C X R X R D
33 4 32 sylan2 A B R + X R C D X R C X R X R D
34 33 adantrl A B X R + X R C D X R C X R X R D
35 23 25 34 3bitr4d A B X R + X A B X R C D