Metamath Proof Explorer


Theorem iccen

Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion iccen A B A < B 0 1 A B

Proof

Step Hyp Ref Expression
1 ovex 0 1 V
2 ovex A B V
3 eqid x 0 1 x B + 1 x A = x 0 1 x B + 1 x A
4 3 iccf1o A B A < B x 0 1 x B + 1 x A : 0 1 1-1 onto A B x 0 1 x B + 1 x A -1 = y A B y A B A
5 4 simpld A B A < B x 0 1 x B + 1 x A : 0 1 1-1 onto A B
6 f1oen2g 0 1 V A B V x 0 1 x B + 1 x A : 0 1 1-1 onto A B 0 1 A B
7 1 2 5 6 mp3an12i A B A < B 0 1 A B