Metamath Proof Explorer


Theorem iccen

Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion iccen ABA<B01AB

Proof

Step Hyp Ref Expression
1 ovex 01V
2 ovex ABV
3 eqid x01xB+1xA=x01xB+1xA
4 3 iccf1o ABA<Bx01xB+1xA:011-1 ontoABx01xB+1xA-1=yAByABA
5 4 simpld ABA<Bx01xB+1xA:011-1 ontoAB
6 f1oen2g 01VABVx01xB+1xA:011-1 ontoAB01AB
7 1 2 5 6 mp3an12i ABA<B01AB