Metamath Proof Explorer


Theorem icceuelpartlem

Description: Lemma for icceuelpart . (Contributed by AV, 19-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φ M
iccpartiun.p φ P RePart M
Assertion icceuelpartlem φ I 0 ..^ M J 0 ..^ M I < J P I + 1 P J

Proof

Step Hyp Ref Expression
1 iccpartiun.m φ M
2 iccpartiun.p φ P RePart M
3 fveq2 I + 1 = J P I + 1 = P J
4 3 olcd I + 1 = J P I + 1 < P J P I + 1 = P J
5 4 a1d I + 1 = J φ I 0 ..^ M J 0 ..^ M I < J P I + 1 < P J P I + 1 = P J
6 elfzoelz I 0 ..^ M I
7 elfzoelz J 0 ..^ M J
8 zltp1le I J I < J I + 1 J
9 8 biimpcd I < J I J I + 1 J
10 9 adantr I < J ¬ I + 1 = J I J I + 1 J
11 10 impcom I J I < J ¬ I + 1 = J I + 1 J
12 df-ne I + 1 J ¬ I + 1 = J
13 necom I + 1 J J I + 1
14 12 13 sylbb1 ¬ I + 1 = J J I + 1
15 14 adantl I < J ¬ I + 1 = J J I + 1
16 15 adantl I J I < J ¬ I + 1 = J J I + 1
17 11 16 jca I J I < J ¬ I + 1 = J I + 1 J J I + 1
18 peano2z I I + 1
19 18 zred I I + 1
20 zre J J
21 19 20 anim12i I J I + 1 J
22 21 adantr I J I < J ¬ I + 1 = J I + 1 J
23 ltlen I + 1 J I + 1 < J I + 1 J J I + 1
24 22 23 syl I J I < J ¬ I + 1 = J I + 1 < J I + 1 J J I + 1
25 17 24 mpbird I J I < J ¬ I + 1 = J I + 1 < J
26 25 ex I J I < J ¬ I + 1 = J I + 1 < J
27 6 7 26 syl2an I 0 ..^ M J 0 ..^ M I < J ¬ I + 1 = J I + 1 < J
28 27 adantl φ I 0 ..^ M J 0 ..^ M I < J ¬ I + 1 = J I + 1 < J
29 1 2 iccpartgt φ i 0 M j 0 M i < j P i < P j
30 fzofzp1 I 0 ..^ M I + 1 0 M
31 elfzofz J 0 ..^ M J 0 M
32 breq1 i = I + 1 i < j I + 1 < j
33 fveq2 i = I + 1 P i = P I + 1
34 33 breq1d i = I + 1 P i < P j P I + 1 < P j
35 32 34 imbi12d i = I + 1 i < j P i < P j I + 1 < j P I + 1 < P j
36 breq2 j = J I + 1 < j I + 1 < J
37 fveq2 j = J P j = P J
38 37 breq2d j = J P I + 1 < P j P I + 1 < P J
39 36 38 imbi12d j = J I + 1 < j P I + 1 < P j I + 1 < J P I + 1 < P J
40 35 39 rspc2v I + 1 0 M J 0 M i 0 M j 0 M i < j P i < P j I + 1 < J P I + 1 < P J
41 30 31 40 syl2an I 0 ..^ M J 0 ..^ M i 0 M j 0 M i < j P i < P j I + 1 < J P I + 1 < P J
42 29 41 mpan9 φ I 0 ..^ M J 0 ..^ M I + 1 < J P I + 1 < P J
43 28 42 syld φ I 0 ..^ M J 0 ..^ M I < J ¬ I + 1 = J P I + 1 < P J
44 43 expdimp φ I 0 ..^ M J 0 ..^ M I < J ¬ I + 1 = J P I + 1 < P J
45 44 impcom ¬ I + 1 = J φ I 0 ..^ M J 0 ..^ M I < J P I + 1 < P J
46 45 orcd ¬ I + 1 = J φ I 0 ..^ M J 0 ..^ M I < J P I + 1 < P J P I + 1 = P J
47 46 ex ¬ I + 1 = J φ I 0 ..^ M J 0 ..^ M I < J P I + 1 < P J P I + 1 = P J
48 5 47 pm2.61i φ I 0 ..^ M J 0 ..^ M I < J P I + 1 < P J P I + 1 = P J
49 1 adantr φ I 0 ..^ M J 0 ..^ M M
50 2 adantr φ I 0 ..^ M J 0 ..^ M P RePart M
51 30 adantr I 0 ..^ M J 0 ..^ M I + 1 0 M
52 51 adantl φ I 0 ..^ M J 0 ..^ M I + 1 0 M
53 49 50 52 iccpartxr φ I 0 ..^ M J 0 ..^ M P I + 1 *
54 31 adantl I 0 ..^ M J 0 ..^ M J 0 M
55 54 adantl φ I 0 ..^ M J 0 ..^ M J 0 M
56 49 50 55 iccpartxr φ I 0 ..^ M J 0 ..^ M P J *
57 53 56 jca φ I 0 ..^ M J 0 ..^ M P I + 1 * P J *
58 57 adantr φ I 0 ..^ M J 0 ..^ M I < J P I + 1 * P J *
59 xrleloe P I + 1 * P J * P I + 1 P J P I + 1 < P J P I + 1 = P J
60 58 59 syl φ I 0 ..^ M J 0 ..^ M I < J P I + 1 P J P I + 1 < P J P I + 1 = P J
61 48 60 mpbird φ I 0 ..^ M J 0 ..^ M I < J P I + 1 P J
62 61 exp31 φ I 0 ..^ M J 0 ..^ M I < J P I + 1 P J