Step |
Hyp |
Ref |
Expression |
1 |
|
iccf1o.1 |
|
2 |
|
elicc01 |
|
3 |
2
|
simp1bi |
|
4 |
3
|
adantl |
|
5 |
4
|
recnd |
|
6 |
|
simpl2 |
|
7 |
6
|
recnd |
|
8 |
5 7
|
mulcld |
|
9 |
|
ax-1cn |
|
10 |
|
subcl |
|
11 |
9 5 10
|
sylancr |
|
12 |
|
simpl1 |
|
13 |
12
|
recnd |
|
14 |
11 13
|
mulcld |
|
15 |
8 14
|
addcomd |
|
16 |
|
lincmb01cmp |
|
17 |
15 16
|
eqeltrd |
|
18 |
|
simpr |
|
19 |
|
simpl1 |
|
20 |
|
simpl2 |
|
21 |
|
elicc2 |
|
22 |
21
|
3adant3 |
|
23 |
22
|
biimpa |
|
24 |
23
|
simp1d |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
25 26
|
iccshftl |
|
28 |
19 20 24 19 27
|
syl22anc |
|
29 |
18 28
|
mpbid |
|
30 |
24 19
|
resubcld |
|
31 |
30
|
recnd |
|
32 |
|
difrp |
|
33 |
32
|
biimp3a |
|
34 |
33
|
adantr |
|
35 |
34
|
rpcnd |
|
36 |
34
|
rpne0d |
|
37 |
31 35 36
|
divcan1d |
|
38 |
35
|
mul02d |
|
39 |
19
|
recnd |
|
40 |
39
|
subidd |
|
41 |
38 40
|
eqtr4d |
|
42 |
35
|
mulid2d |
|
43 |
41 42
|
oveq12d |
|
44 |
29 37 43
|
3eltr4d |
|
45 |
|
0red |
|
46 |
|
1red |
|
47 |
30 34
|
rerpdivcld |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
48 49
|
iccdil |
|
51 |
45 46 47 34 50
|
syl22anc |
|
52 |
44 51
|
mpbird |
|
53 |
|
eqcom |
|
54 |
31
|
adantrl |
|
55 |
5
|
adantrr |
|
56 |
35
|
adantrl |
|
57 |
36
|
adantrl |
|
58 |
54 55 56 57
|
divmul3d |
|
59 |
53 58
|
syl5bb |
|
60 |
24
|
adantrl |
|
61 |
60
|
recnd |
|
62 |
39
|
adantrl |
|
63 |
6 12
|
resubcld |
|
64 |
4 63
|
remulcld |
|
65 |
64
|
adantrr |
|
66 |
65
|
recnd |
|
67 |
61 62 66
|
subadd2d |
|
68 |
|
eqcom |
|
69 |
67 68
|
bitrdi |
|
70 |
5 13
|
mulcld |
|
71 |
8 70 13
|
subadd23d |
|
72 |
5 7 13
|
subdid |
|
73 |
72
|
oveq1d |
|
74 |
|
1cnd |
|
75 |
74 5 13
|
subdird |
|
76 |
13
|
mulid2d |
|
77 |
76
|
oveq1d |
|
78 |
75 77
|
eqtrd |
|
79 |
78
|
oveq2d |
|
80 |
71 73 79
|
3eqtr4d |
|
81 |
80
|
adantrr |
|
82 |
81
|
eqeq2d |
|
83 |
59 69 82
|
3bitrd |
|
84 |
1 17 52 83
|
f1ocnv2d |
|