Metamath Proof Explorer


Theorem icchmeo

Description: The natural bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses icchmeo.j J = TopOpen fld
icchmeo.f F = x 0 1 x B + 1 x A
Assertion icchmeo A B A < B F II Homeo J 𝑡 A B

Proof

Step Hyp Ref Expression
1 icchmeo.j J = TopOpen fld
2 icchmeo.f F = x 0 1 x B + 1 x A
3 iitopon II TopOn 0 1
4 3 a1i A B A < B II TopOn 0 1
5 1 dfii3 II = J 𝑡 0 1
6 5 oveq2i II Cn II = II Cn J 𝑡 0 1
7 1 cnfldtop J Top
8 cnrest2r J Top II Cn J 𝑡 0 1 II Cn J
9 7 8 ax-mp II Cn J 𝑡 0 1 II Cn J
10 6 9 eqsstri II Cn II II Cn J
11 4 cnmptid A B A < B x 0 1 x II Cn II
12 10 11 sselid A B A < B x 0 1 x II Cn J
13 1 cnfldtopon J TopOn
14 13 a1i A B A < B J TopOn
15 simp2 A B A < B B
16 15 recnd A B A < B B
17 4 14 16 cnmptc A B A < B x 0 1 B II Cn J
18 1 mulcn × J × t J Cn J
19 18 a1i A B A < B × J × t J Cn J
20 4 12 17 19 cnmpt12f A B A < B x 0 1 x B II Cn J
21 1cnd A B A < B 1
22 4 14 21 cnmptc A B A < B x 0 1 1 II Cn J
23 1 subcn J × t J Cn J
24 23 a1i A B A < B J × t J Cn J
25 4 22 12 24 cnmpt12f A B A < B x 0 1 1 x II Cn J
26 simp1 A B A < B A
27 26 recnd A B A < B A
28 4 14 27 cnmptc A B A < B x 0 1 A II Cn J
29 4 25 28 19 cnmpt12f A B A < B x 0 1 1 x A II Cn J
30 1 addcn + J × t J Cn J
31 30 a1i A B A < B + J × t J Cn J
32 4 20 29 31 cnmpt12f A B A < B x 0 1 x B + 1 x A II Cn J
33 2 32 eqeltrid A B A < B F II Cn J
34 2 iccf1o A B A < B F : 0 1 1-1 onto A B F -1 = y A B y A B A
35 34 simpld A B A < B F : 0 1 1-1 onto A B
36 f1of F : 0 1 1-1 onto A B F : 0 1 A B
37 frn F : 0 1 A B ran F A B
38 35 36 37 3syl A B A < B ran F A B
39 iccssre A B A B
40 39 3adant3 A B A < B A B
41 ax-resscn
42 40 41 sstrdi A B A < B A B
43 cnrest2 J TopOn ran F A B A B F II Cn J F II Cn J 𝑡 A B
44 13 38 42 43 mp3an2i A B A < B F II Cn J F II Cn J 𝑡 A B
45 33 44 mpbid A B A < B F II Cn J 𝑡 A B
46 34 simprd A B A < B F -1 = y A B y A B A
47 resttopon J TopOn A B J 𝑡 A B TopOn A B
48 13 42 47 sylancr A B A < B J 𝑡 A B TopOn A B
49 cnrest2r J Top J 𝑡 A B Cn J 𝑡 A B J 𝑡 A B Cn J
50 7 49 ax-mp J 𝑡 A B Cn J 𝑡 A B J 𝑡 A B Cn J
51 48 cnmptid A B A < B y A B y J 𝑡 A B Cn J 𝑡 A B
52 50 51 sselid A B A < B y A B y J 𝑡 A B Cn J
53 48 14 27 cnmptc A B A < B y A B A J 𝑡 A B Cn J
54 48 52 53 24 cnmpt12f A B A < B y A B y A J 𝑡 A B Cn J
55 difrp A B A < B B A +
56 55 biimp3a A B A < B B A +
57 56 rpcnd A B A < B B A
58 56 rpne0d A B A < B B A 0
59 1 divccn B A B A 0 x x B A J Cn J
60 57 58 59 syl2anc A B A < B x x B A J Cn J
61 oveq1 x = y A x B A = y A B A
62 48 54 14 60 61 cnmpt11 A B A < B y A B y A B A J 𝑡 A B Cn J
63 46 62 eqeltrd A B A < B F -1 J 𝑡 A B Cn J
64 dfdm4 dom F = ran F -1
65 64 eqimss2i ran F -1 dom F
66 f1odm F : 0 1 1-1 onto A B dom F = 0 1
67 35 66 syl A B A < B dom F = 0 1
68 65 67 sseqtrid A B A < B ran F -1 0 1
69 unitssre 0 1
70 69 a1i A B A < B 0 1
71 70 41 sstrdi A B A < B 0 1
72 cnrest2 J TopOn ran F -1 0 1 0 1 F -1 J 𝑡 A B Cn J F -1 J 𝑡 A B Cn J 𝑡 0 1
73 13 68 71 72 mp3an2i A B A < B F -1 J 𝑡 A B Cn J F -1 J 𝑡 A B Cn J 𝑡 0 1
74 63 73 mpbid A B A < B F -1 J 𝑡 A B Cn J 𝑡 0 1
75 5 oveq2i J 𝑡 A B Cn II = J 𝑡 A B Cn J 𝑡 0 1
76 74 75 eleqtrrdi A B A < B F -1 J 𝑡 A B Cn II
77 ishmeo F II Homeo J 𝑡 A B F II Cn J 𝑡 A B F -1 J 𝑡 A B Cn II
78 45 76 77 sylanbrc A B A < B F II Homeo J 𝑡 A B