Step |
Hyp |
Ref |
Expression |
1 |
|
icchmeo.j |
|
2 |
|
icchmeo.f |
|
3 |
|
iitopon |
|
4 |
3
|
a1i |
|
5 |
1
|
dfii3 |
|
6 |
5
|
oveq2i |
|
7 |
1
|
cnfldtop |
|
8 |
|
cnrest2r |
|
9 |
7 8
|
ax-mp |
|
10 |
6 9
|
eqsstri |
|
11 |
4
|
cnmptid |
|
12 |
10 11
|
sselid |
|
13 |
1
|
cnfldtopon |
|
14 |
13
|
a1i |
|
15 |
|
simp2 |
|
16 |
15
|
recnd |
|
17 |
4 14 16
|
cnmptc |
|
18 |
1
|
mulcn |
|
19 |
18
|
a1i |
|
20 |
4 12 17 19
|
cnmpt12f |
|
21 |
|
1cnd |
|
22 |
4 14 21
|
cnmptc |
|
23 |
1
|
subcn |
|
24 |
23
|
a1i |
|
25 |
4 22 12 24
|
cnmpt12f |
|
26 |
|
simp1 |
|
27 |
26
|
recnd |
|
28 |
4 14 27
|
cnmptc |
|
29 |
4 25 28 19
|
cnmpt12f |
|
30 |
1
|
addcn |
|
31 |
30
|
a1i |
|
32 |
4 20 29 31
|
cnmpt12f |
|
33 |
2 32
|
eqeltrid |
|
34 |
2
|
iccf1o |
|
35 |
34
|
simpld |
|
36 |
|
f1of |
|
37 |
|
frn |
|
38 |
35 36 37
|
3syl |
|
39 |
|
iccssre |
|
40 |
39
|
3adant3 |
|
41 |
|
ax-resscn |
|
42 |
40 41
|
sstrdi |
|
43 |
|
cnrest2 |
|
44 |
13 38 42 43
|
mp3an2i |
|
45 |
33 44
|
mpbid |
|
46 |
34
|
simprd |
|
47 |
|
resttopon |
|
48 |
13 42 47
|
sylancr |
|
49 |
|
cnrest2r |
|
50 |
7 49
|
ax-mp |
|
51 |
48
|
cnmptid |
|
52 |
50 51
|
sselid |
|
53 |
48 14 27
|
cnmptc |
|
54 |
48 52 53 24
|
cnmpt12f |
|
55 |
|
difrp |
|
56 |
55
|
biimp3a |
|
57 |
56
|
rpcnd |
|
58 |
56
|
rpne0d |
|
59 |
1
|
divccn |
|
60 |
57 58 59
|
syl2anc |
|
61 |
|
oveq1 |
|
62 |
48 54 14 60 61
|
cnmpt11 |
|
63 |
46 62
|
eqeltrd |
|
64 |
|
dfdm4 |
|
65 |
64
|
eqimss2i |
|
66 |
|
f1odm |
|
67 |
35 66
|
syl |
|
68 |
65 67
|
sseqtrid |
|
69 |
|
unitssre |
|
70 |
69
|
a1i |
|
71 |
70 41
|
sstrdi |
|
72 |
|
cnrest2 |
|
73 |
13 68 71 72
|
mp3an2i |
|
74 |
63 73
|
mpbid |
|
75 |
5
|
oveq2i |
|
76 |
74 75
|
eleqtrrdi |
|
77 |
|
ishmeo |
|
78 |
45 76 77
|
sylanbrc |
|