Metamath Proof Explorer


Theorem iccid

Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009)

Ref Expression
Assertion iccid A * A A = A

Proof

Step Hyp Ref Expression
1 elicc1 A * A * x A A x * A x x A
2 1 anidms A * x A A x * A x x A
3 xrlenlt A * x * A x ¬ x < A
4 xrlenlt x * A * x A ¬ A < x
5 4 ancoms A * x * x A ¬ A < x
6 xrlttri3 x * A * x = A ¬ x < A ¬ A < x
7 6 biimprd x * A * ¬ x < A ¬ A < x x = A
8 7 ancoms A * x * ¬ x < A ¬ A < x x = A
9 8 expcomd A * x * ¬ A < x ¬ x < A x = A
10 5 9 sylbid A * x * x A ¬ x < A x = A
11 10 com23 A * x * ¬ x < A x A x = A
12 3 11 sylbid A * x * A x x A x = A
13 12 ex A * x * A x x A x = A
14 13 3impd A * x * A x x A x = A
15 eleq1a A * x = A x *
16 xrleid A * A A
17 breq2 x = A A x A A
18 16 17 syl5ibrcom A * x = A A x
19 breq1 x = A x A A A
20 16 19 syl5ibrcom A * x = A x A
21 15 18 20 3jcad A * x = A x * A x x A
22 14 21 impbid A * x * A x x A x = A
23 velsn x A x = A
24 22 23 bitr4di A * x * A x x A x A
25 2 24 bitrd A * x A A x A
26 25 eqrdv A * A A = A