Metamath Proof Explorer


Theorem iccintsng

Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iccintsng A * B * C * A B B C A B B C = B

Proof

Step Hyp Ref Expression
1 simpl1 A * B * C * x A B x B C A *
2 simpl2 A * B * C * x A B x B C B *
3 simprl A * B * C * x A B x B C x A B
4 iccleub A * B * x A B x B
5 1 2 3 4 syl3anc A * B * C * x A B x B C x B
6 simpl3 A * B * C * x A B x B C C *
7 simprr A * B * C * x A B x B C x B C
8 iccgelb B * C * x B C B x
9 2 6 7 8 syl3anc A * B * C * x A B x B C B x
10 eliccxr x A B x *
11 3 10 syl A * B * C * x A B x B C x *
12 11 2 jca A * B * C * x A B x B C x * B *
13 xrletri3 x * B * x = B x B B x
14 12 13 syl A * B * C * x A B x B C x = B x B B x
15 5 9 14 mpbir2and A * B * C * x A B x B C x = B
16 15 ex A * B * C * x A B x B C x = B
17 16 adantr A * B * C * A B B C x A B x B C x = B
18 simpll1 A * B * C * A B B C x = B A *
19 simpll2 A * B * C * A B B C x = B B *
20 simplrl A * B * C * A B B C x = B A B
21 simpr A * B * C * A B B C x = B x = B
22 simpr A * B * A B x = B x = B
23 ubicc2 A * B * A B B A B
24 23 adantr A * B * A B x = B B A B
25 22 24 eqeltrd A * B * A B x = B x A B
26 18 19 20 21 25 syl31anc A * B * C * A B B C x = B x A B
27 simpll3 A * B * C * A B B C x = B C *
28 simplrr A * B * C * A B B C x = B B C
29 simpr B * C * B C x = B x = B
30 lbicc2 B * C * B C B B C
31 30 adantr B * C * B C x = B B B C
32 29 31 eqeltrd B * C * B C x = B x B C
33 19 27 28 21 32 syl31anc A * B * C * A B B C x = B x B C
34 26 33 jca A * B * C * A B B C x = B x A B x B C
35 34 ex A * B * C * A B B C x = B x A B x B C
36 17 35 impbid A * B * C * A B B C x A B x B C x = B
37 elin x A B B C x A B x B C
38 velsn x B x = B
39 36 37 38 3bitr4g A * B * C * A B B C x A B B C x B
40 39 eqrdv A * B * C * A B B C A B B C = B