Metamath Proof Explorer


Theorem iccleubd

Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iccleubd.1 φ A *
iccleubd.2 φ B *
iccleubd.3 φ C A B
Assertion iccleubd φ C B

Proof

Step Hyp Ref Expression
1 iccleubd.1 φ A *
2 iccleubd.2 φ B *
3 iccleubd.3 φ C A B
4 iccleub A * B * C A B C B
5 1 2 3 4 syl3anc φ C B