Metamath Proof Explorer


Theorem iccmbl

Description: A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion iccmbl A B A B dom vol

Proof

Step Hyp Ref Expression
1 iccssre A B A B
2 dfss4 A B A B = A B
3 1 2 sylib A B A B = A B
4 difreicc A B A B = −∞ A B +∞
5 ioombl −∞ A dom vol
6 ioombl B +∞ dom vol
7 unmbl −∞ A dom vol B +∞ dom vol −∞ A B +∞ dom vol
8 5 6 7 mp2an −∞ A B +∞ dom vol
9 4 8 eqeltrdi A B A B dom vol
10 cmmbl A B dom vol A B dom vol
11 9 10 syl A B A B dom vol
12 3 11 eqeltrrd A B A B dom vol