Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
iccmbl
Next ⟩
iccvolcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
iccmbl
Description:
A closed real interval is measurable.
(Contributed by
Mario Carneiro
, 16-Jun-2014)
Ref
Expression
Assertion
iccmbl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
B
∈
dom
⁡
vol
Proof
Step
Hyp
Ref
Expression
1
iccssre
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
B
⊆
ℝ
2
dfss4
⊢
A
B
⊆
ℝ
↔
ℝ
∖
ℝ
∖
A
B
=
A
B
3
1
2
sylib
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ℝ
∖
ℝ
∖
A
B
=
A
B
4
difreicc
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ℝ
∖
A
B
=
−∞
A
∪
B
+∞
5
ioombl
⊢
−∞
A
∈
dom
⁡
vol
6
ioombl
⊢
B
+∞
∈
dom
⁡
vol
7
unmbl
⊢
−∞
A
∈
dom
⁡
vol
∧
B
+∞
∈
dom
⁡
vol
→
−∞
A
∪
B
+∞
∈
dom
⁡
vol
8
5
6
7
mp2an
⊢
−∞
A
∪
B
+∞
∈
dom
⁡
vol
9
4
8
eqeltrdi
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ℝ
∖
A
B
∈
dom
⁡
vol
10
cmmbl
⊢
ℝ
∖
A
B
∈
dom
⁡
vol
→
ℝ
∖
ℝ
∖
A
B
∈
dom
⁡
vol
11
9
10
syl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ℝ
∖
ℝ
∖
A
B
∈
dom
⁡
vol
12
3
11
eqeltrrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
B
∈
dom
⁡
vol