Metamath Proof Explorer


Theorem icco1

Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016)

Ref Expression
Hypotheses icco1.1 φ A
icco1.2 φ x A B
icco1.3 φ C
icco1.4 φ M
icco1.5 φ N
icco1.6 φ x A C x B M N
Assertion icco1 φ x A B 𝑂1

Proof

Step Hyp Ref Expression
1 icco1.1 φ A
2 icco1.2 φ x A B
3 icco1.3 φ C
4 icco1.4 φ M
5 icco1.5 φ N
6 icco1.6 φ x A C x B M N
7 elicc2 M N B M N B M B B N
8 4 5 7 syl2anc φ B M N B M B B N
9 8 adantr φ x A C x B M N B M B B N
10 6 9 mpbid φ x A C x B M B B N
11 10 simp3d φ x A C x B N
12 1 2 3 5 11 ello1d φ x A B 𝑂1
13 2 renegcld φ x A B
14 4 renegcld φ M
15 10 simp2d φ x A C x M B
16 4 adantr φ x A C x M
17 2 adantrr φ x A C x B
18 16 17 lenegd φ x A C x M B B M
19 15 18 mpbid φ x A C x B M
20 1 13 3 14 19 ello1d φ x A B 𝑂1
21 2 o1lo1 φ x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
22 12 20 21 mpbir2and φ x A B 𝑂1