Metamath Proof Explorer


Theorem iccordt

Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iccordt A B Clsd ordTop

Proof

Step Hyp Ref Expression
1 df-ov A B = . A B
2 letsr TosetRel
3 ledm * = dom
4 3 ordtcld3 TosetRel x * y * z * | x z z y Clsd ordTop
5 2 4 mp3an1 x * y * z * | x z z y Clsd ordTop
6 5 rgen2 x * y * z * | x z z y Clsd ordTop
7 df-icc . = x * , y * z * | x z z y
8 7 fmpo x * y * z * | x z z y Clsd ordTop . : * × * Clsd ordTop
9 6 8 mpbi . : * × * Clsd ordTop
10 letop ordTop Top
11 0cld ordTop Top Clsd ordTop
12 10 11 ax-mp Clsd ordTop
13 9 12 f0cli . A B Clsd ordTop
14 1 13 eqeltri A B Clsd ordTop