Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartiun.m |
|
2 |
|
iccpartiun.p |
|
3 |
|
nfv |
|
4 |
|
nfreu1 |
|
5 |
|
simpl |
|
6 |
1
|
adantr |
|
7 |
2
|
adantr |
|
8 |
|
nnnn0 |
|
9 |
|
0elfz |
|
10 |
1 8 9
|
3syl |
|
11 |
10
|
adantr |
|
12 |
6 7 11
|
iccpartxr |
|
13 |
|
nn0fz0 |
|
14 |
13
|
biimpi |
|
15 |
1 8 14
|
3syl |
|
16 |
15
|
adantr |
|
17 |
6 7 16
|
iccpartxr |
|
18 |
1 2
|
iccpartgel |
|
19 |
|
elfzofz |
|
20 |
19
|
adantl |
|
21 |
|
fveq2 |
|
22 |
21
|
breq2d |
|
23 |
22
|
rspcv |
|
24 |
20 23
|
syl |
|
25 |
24
|
ex |
|
26 |
18 25
|
mpid |
|
27 |
26
|
imp |
|
28 |
1 2
|
iccpartleu |
|
29 |
|
fzofzp1 |
|
30 |
29
|
adantl |
|
31 |
|
fveq2 |
|
32 |
31
|
breq1d |
|
33 |
32
|
rspcv |
|
34 |
30 33
|
syl |
|
35 |
34
|
ex |
|
36 |
28 35
|
mpid |
|
37 |
36
|
imp |
|
38 |
|
icossico |
|
39 |
12 17 27 37 38
|
syl22anc |
|
40 |
39
|
sseld |
|
41 |
1 2
|
icceuelpart |
|
42 |
5 40 41
|
syl6an |
|
43 |
42
|
ex |
|
44 |
3 4 43
|
rexlimd |
|
45 |
|
rmo5 |
|
46 |
44 45
|
sylibr |
|
47 |
46
|
alrimiv |
|
48 |
|
df-disj |
|
49 |
47 48
|
sylibr |
|