Metamath Proof Explorer


Theorem iccpartel

Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartel φ I 0 M P I P 0 P M

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 1 2 iccpartf φ P : 0 M P 0 P M
4 3 ffvelrnda φ I 0 M P I P 0 P M