Metamath Proof Explorer


Theorem iccpartf

Description: The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartf φ P : 0 M P 0 P M

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 iccpart M P RePart M P * 0 M i 0 ..^ M P i < P i + 1
4 elmapfn P * 0 M P Fn 0 M
5 4 adantr P * 0 M i 0 ..^ M P i < P i + 1 P Fn 0 M
6 3 5 syl6bi M P RePart M P Fn 0 M
7 1 2 6 sylc φ P Fn 0 M
8 1 2 iccpartrn φ ran P P 0 P M
9 df-f P : 0 M P 0 P M P Fn 0 M ran P P 0 P M
10 7 8 9 sylanbrc φ P : 0 M P 0 P M