Metamath Proof Explorer


Theorem iccpartgel

Description: If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartgel φ i 0 M P 0 P i

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 1 nnnn0d φ M 0
4 elnn0uz M 0 M 0
5 3 4 sylib φ M 0
6 fzpred M 0 0 M = 0 0 + 1 M
7 5 6 syl φ 0 M = 0 0 + 1 M
8 7 eleq2d φ i 0 M i 0 0 + 1 M
9 elun i 0 0 + 1 M i 0 i 0 + 1 M
10 9 a1i φ i 0 0 + 1 M i 0 i 0 + 1 M
11 velsn i 0 i = 0
12 11 a1i φ i 0 i = 0
13 0p1e1 0 + 1 = 1
14 13 a1i φ 0 + 1 = 1
15 14 oveq1d φ 0 + 1 M = 1 M
16 15 eleq2d φ i 0 + 1 M i 1 M
17 12 16 orbi12d φ i 0 i 0 + 1 M i = 0 i 1 M
18 8 10 17 3bitrd φ i 0 M i = 0 i 1 M
19 0elfz M 0 0 0 M
20 3 19 syl φ 0 0 M
21 1 2 20 iccpartxr φ P 0 *
22 21 xrleidd φ P 0 P 0
23 fveq2 i = 0 P i = P 0
24 23 breq2d i = 0 P 0 P i P 0 P 0
25 22 24 syl5ibr i = 0 φ P 0 P i
26 21 adantr φ i 1 M P 0 *
27 1 adantr φ i 1 M M
28 2 adantr φ i 1 M P RePart M
29 1nn0 1 0
30 29 a1i φ 1 0
31 elnn0uz 1 0 1 0
32 30 31 sylib φ 1 0
33 fzss1 1 0 1 M 0 M
34 32 33 syl φ 1 M 0 M
35 34 sselda φ i 1 M i 0 M
36 27 28 35 iccpartxr φ i 1 M P i *
37 1 2 iccpartgtl φ k 1 M P 0 < P k
38 fveq2 k = i P k = P i
39 38 breq2d k = i P 0 < P k P 0 < P i
40 39 rspccv k 1 M P 0 < P k i 1 M P 0 < P i
41 37 40 syl φ i 1 M P 0 < P i
42 41 imp φ i 1 M P 0 < P i
43 26 36 42 xrltled φ i 1 M P 0 P i
44 43 expcom i 1 M φ P 0 P i
45 25 44 jaoi i = 0 i 1 M φ P 0 P i
46 45 com12 φ i = 0 i 1 M P 0 P i
47 18 46 sylbid φ i 0 M P 0 P i
48 47 ralrimiv φ i 0 M P 0 P i