Metamath Proof Explorer


Theorem iccpartgt

Description: If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartgt φ i 0 M j 0 M i < j P i < P j

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 1 nnnn0d φ M 0
4 elnn0uz M 0 M 0
5 3 4 sylib φ M 0
6 fzpred M 0 0 M = 0 0 + 1 M
7 5 6 syl φ 0 M = 0 0 + 1 M
8 0p1e1 0 + 1 = 1
9 8 oveq1i 0 + 1 M = 1 M
10 9 a1i φ 0 + 1 M = 1 M
11 10 uneq2d φ 0 0 + 1 M = 0 1 M
12 7 11 eqtrd φ 0 M = 0 1 M
13 12 eleq2d φ i 0 M i 0 1 M
14 elun i 0 1 M i 0 i 1 M
15 velsn i 0 i = 0
16 15 orbi1i i 0 i 1 M i = 0 i 1 M
17 14 16 bitri i 0 1 M i = 0 i 1 M
18 fzisfzounsn M 0 0 M = 0 ..^ M M
19 5 18 syl φ 0 M = 0 ..^ M M
20 19 eleq2d φ j 0 M j 0 ..^ M M
21 elun j 0 ..^ M M j 0 ..^ M j M
22 velsn j M j = M
23 22 orbi2i j 0 ..^ M j M j 0 ..^ M j = M
24 21 23 bitri j 0 ..^ M M j 0 ..^ M j = M
25 20 24 bitrdi φ j 0 M j 0 ..^ M j = M
26 simpl j 0 ..^ M 0 < j j 0 ..^ M
27 simpr j 0 ..^ M 0 < j 0 < j
28 27 gt0ne0d j 0 ..^ M 0 < j j 0
29 fzo1fzo0n0 j 1 ..^ M j 0 ..^ M j 0
30 26 28 29 sylanbrc j 0 ..^ M 0 < j j 1 ..^ M
31 1 2 iccpartigtl φ k 1 ..^ M P 0 < P k
32 fveq2 k = j P k = P j
33 32 breq2d k = j P 0 < P k P 0 < P j
34 33 rspcv j 1 ..^ M k 1 ..^ M P 0 < P k P 0 < P j
35 30 31 34 syl2imc φ j 0 ..^ M 0 < j P 0 < P j
36 35 expd φ j 0 ..^ M 0 < j P 0 < P j
37 36 impcom j 0 ..^ M φ 0 < j P 0 < P j
38 breq1 i = 0 i < j 0 < j
39 fveq2 i = 0 P i = P 0
40 39 breq1d i = 0 P i < P j P 0 < P j
41 38 40 imbi12d i = 0 i < j P i < P j 0 < j P 0 < P j
42 37 41 syl5ibr i = 0 j 0 ..^ M φ i < j P i < P j
43 42 expd i = 0 j 0 ..^ M φ i < j P i < P j
44 43 com12 j 0 ..^ M i = 0 φ i < j P i < P j
45 1 2 iccpartlt φ P 0 < P M
46 fveq2 j = M P j = P M
47 39 46 breqan12rd j = M i = 0 P i < P j P 0 < P M
48 45 47 syl5ibr j = M i = 0 φ P i < P j
49 48 a1dd j = M i = 0 φ i < j P i < P j
50 49 ex j = M i = 0 φ i < j P i < P j
51 44 50 jaoi j 0 ..^ M j = M i = 0 φ i < j P i < P j
52 51 com12 i = 0 j 0 ..^ M j = M φ i < j P i < P j
53 elfzelz i 1 M i
54 53 ad3antlr j 0 ..^ M i 1 M i < j φ i
55 53 peano2zd i 1 M i + 1
56 55 ad2antlr j 0 ..^ M i 1 M i < j i + 1
57 elfzoelz j 0 ..^ M j
58 57 ad2antrr j 0 ..^ M i 1 M i < j j
59 simpr j 0 ..^ M i 1 M i < j i < j
60 57 53 anim12ci j 0 ..^ M i 1 M i j
61 60 adantr j 0 ..^ M i 1 M i < j i j
62 zltp1le i j i < j i + 1 j
63 61 62 syl j 0 ..^ M i 1 M i < j i < j i + 1 j
64 59 63 mpbid j 0 ..^ M i 1 M i < j i + 1 j
65 56 58 64 3jca j 0 ..^ M i 1 M i < j i + 1 j i + 1 j
66 65 adantr j 0 ..^ M i 1 M i < j φ i + 1 j i + 1 j
67 eluz2 j i + 1 i + 1 j i + 1 j
68 66 67 sylibr j 0 ..^ M i 1 M i < j φ j i + 1
69 1 ad2antlr j 0 ..^ M i 1 M i < j φ k i j M
70 2 ad2antlr j 0 ..^ M i 1 M i < j φ k i j P RePart M
71 1zzd j 0 ..^ M i 1 M i < j φ k i j 1
72 elfzelz k i j k
73 72 adantl j 0 ..^ M i 1 M i < j φ k i j k
74 elfzle1 i 1 M 1 i
75 elfzle1 k i j i k
76 1red k i j 1
77 elfzel1 k i j i
78 77 zred k i j i
79 72 zred k i j k
80 letr 1 i k 1 i i k 1 k
81 76 78 79 80 syl3anc k i j 1 i i k 1 k
82 75 81 mpan2d k i j 1 i 1 k
83 74 82 syl5com i 1 M k i j 1 k
84 83 ad3antlr j 0 ..^ M i 1 M i < j φ k i j 1 k
85 84 imp j 0 ..^ M i 1 M i < j φ k i j 1 k
86 eluz2 k 1 1 k 1 k
87 71 73 85 86 syl3anbrc j 0 ..^ M i 1 M i < j φ k i j k 1
88 elfzel2 i 1 M M
89 88 ad2antlr j 0 ..^ M i 1 M i < j M
90 89 ad2antrr j 0 ..^ M i 1 M i < j φ k i j M
91 79 adantl j 0 ..^ M i 1 M i < j φ k i j k
92 57 zred j 0 ..^ M j
93 92 ad4antr j 0 ..^ M i 1 M i < j φ k i j j
94 69 nnred j 0 ..^ M i 1 M i < j φ k i j M
95 elfzle2 k i j k j
96 95 adantl j 0 ..^ M i 1 M i < j φ k i j k j
97 elfzolt2 j 0 ..^ M j < M
98 97 ad4antr j 0 ..^ M i 1 M i < j φ k i j j < M
99 91 93 94 96 98 lelttrd j 0 ..^ M i 1 M i < j φ k i j k < M
100 elfzo2 k 1 ..^ M k 1 M k < M
101 87 90 99 100 syl3anbrc j 0 ..^ M i 1 M i < j φ k i j k 1 ..^ M
102 69 70 101 iccpartipre j 0 ..^ M i 1 M i < j φ k i j P k
103 1 ad2antlr j 0 ..^ M i 1 M i < j φ k i j 1 M
104 2 ad2antlr j 0 ..^ M i 1 M i < j φ k i j 1 P RePart M
105 57 ad3antrrr j 0 ..^ M i 1 M i < j φ j
106 fzoval j i ..^ j = i j 1
107 105 106 syl j 0 ..^ M i 1 M i < j φ i ..^ j = i j 1
108 elfzo0le j 0 ..^ M j M
109 0le1 0 1
110 0red i 1 M 0
111 1red i 1 M 1
112 53 zred i 1 M i
113 letr 0 1 i 0 1 1 i 0 i
114 110 111 112 113 syl3anc i 1 M 0 1 1 i 0 i
115 109 114 mpani i 1 M 1 i 0 i
116 74 115 mpd i 1 M 0 i
117 108 116 anim12ci j 0 ..^ M i 1 M 0 i j M
118 117 adantr j 0 ..^ M i 1 M i < j 0 i j M
119 0zd j 0 ..^ M 0
120 elfzoel2 j 0 ..^ M M
121 119 120 jca j 0 ..^ M 0 M
122 121 ad2antrr j 0 ..^ M i 1 M i < j 0 M
123 ssfzo12bi i j 0 M i < j i ..^ j 0 ..^ M 0 i j M
124 61 122 59 123 syl3anc j 0 ..^ M i 1 M i < j i ..^ j 0 ..^ M 0 i j M
125 118 124 mpbird j 0 ..^ M i 1 M i < j i ..^ j 0 ..^ M
126 125 adantr j 0 ..^ M i 1 M i < j φ i ..^ j 0 ..^ M
127 107 126 eqsstrrd j 0 ..^ M i 1 M i < j φ i j 1 0 ..^ M
128 127 sselda j 0 ..^ M i 1 M i < j φ k i j 1 k 0 ..^ M
129 iccpartimp M P RePart M k 0 ..^ M P * 0 M P k < P k + 1
130 103 104 128 129 syl3anc j 0 ..^ M i 1 M i < j φ k i j 1 P * 0 M P k < P k + 1
131 130 simprd j 0 ..^ M i 1 M i < j φ k i j 1 P k < P k + 1
132 54 68 102 131 smonoord j 0 ..^ M i 1 M i < j φ P i < P j
133 132 exp31 j 0 ..^ M i 1 M i < j φ P i < P j
134 133 com23 j 0 ..^ M i 1 M φ i < j P i < P j
135 134 ex j 0 ..^ M i 1 M φ i < j P i < P j
136 elfzuz i 1 M i 1
137 136 adantr i 1 M i < M i 1
138 88 adantr i 1 M i < M M
139 simpr i 1 M i < M i < M
140 elfzo2 i 1 ..^ M i 1 M i < M
141 137 138 139 140 syl3anbrc i 1 M i < M i 1 ..^ M
142 1 2 iccpartiltu φ k 1 ..^ M P k < P M
143 fveq2 k = i P k = P i
144 143 breq1d k = i P k < P M P i < P M
145 144 rspcv i 1 ..^ M k 1 ..^ M P k < P M P i < P M
146 141 142 145 syl2imc φ i 1 M i < M P i < P M
147 146 expd φ i 1 M i < M P i < P M
148 147 impcom i 1 M φ i < M P i < P M
149 148 imp i 1 M φ i < M P i < P M
150 149 a1i j = M i 1 M φ i < M P i < P M
151 breq2 j = M i < j i < M
152 151 anbi2d j = M i 1 M φ i < j i 1 M φ i < M
153 46 breq2d j = M P i < P j P i < P M
154 150 152 153 3imtr4d j = M i 1 M φ i < j P i < P j
155 154 exp4c j = M i 1 M φ i < j P i < P j
156 135 155 jaoi j 0 ..^ M j = M i 1 M φ i < j P i < P j
157 156 com12 i 1 M j 0 ..^ M j = M φ i < j P i < P j
158 52 157 jaoi i = 0 i 1 M j 0 ..^ M j = M φ i < j P i < P j
159 158 com13 φ j 0 ..^ M j = M i = 0 i 1 M i < j P i < P j
160 25 159 sylbid φ j 0 M i = 0 i 1 M i < j P i < P j
161 160 com3r i = 0 i 1 M φ j 0 M i < j P i < P j
162 17 161 sylbi i 0 1 M φ j 0 M i < j P i < P j
163 162 com12 φ i 0 1 M j 0 M i < j P i < P j
164 13 163 sylbid φ i 0 M j 0 M i < j P i < P j
165 164 imp32 φ i 0 M j 0 M i < j P i < P j
166 165 ralrimivva φ i 0 M j 0 M i < j P i < P j