Metamath Proof Explorer


Theorem iccpartgtl

Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartgtl φ i 1 M P 0 < P i

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 elnnuz M M 1
4 1 3 sylib φ M 1
5 fzisfzounsn M 1 1 M = 1 ..^ M M
6 4 5 syl φ 1 M = 1 ..^ M M
7 6 eleq2d φ i 1 M i 1 ..^ M M
8 elun i 1 ..^ M M i 1 ..^ M i M
9 8 a1i φ i 1 ..^ M M i 1 ..^ M i M
10 velsn i M i = M
11 10 a1i φ i M i = M
12 11 orbi2d φ i 1 ..^ M i M i 1 ..^ M i = M
13 7 9 12 3bitrd φ i 1 M i 1 ..^ M i = M
14 fveq2 k = i P k = P i
15 14 breq2d k = i P 0 < P k P 0 < P i
16 15 rspccv k 1 ..^ M P 0 < P k i 1 ..^ M P 0 < P i
17 1 2 iccpartigtl φ k 1 ..^ M P 0 < P k
18 16 17 syl11 i 1 ..^ M φ P 0 < P i
19 1 2 iccpartlt φ P 0 < P M
20 19 adantl i = M φ P 0 < P M
21 fveq2 i = M P i = P M
22 21 adantr i = M φ P i = P M
23 20 22 breqtrrd i = M φ P 0 < P i
24 23 ex i = M φ P 0 < P i
25 18 24 jaoi i 1 ..^ M i = M φ P 0 < P i
26 25 com12 φ i 1 ..^ M i = M P 0 < P i
27 13 26 sylbid φ i 1 M P 0 < P i
28 27 ralrimiv φ i 1 M P 0 < P i