Metamath Proof Explorer


Theorem iccpartgtprec

Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
iccpartgtprec.i φ I 1 M
Assertion iccpartgtprec φ P I 1 < P I

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 iccpartgtprec.i φ I 1 M
4 1 nnzd φ M
5 fzval3 M 1 M = 1 ..^ M + 1
6 5 eleq2d M I 1 M I 1 ..^ M + 1
7 4 6 syl φ I 1 M I 1 ..^ M + 1
8 3 7 mpbid φ I 1 ..^ M + 1
9 1 nncnd φ M
10 pncan1 M M + 1 - 1 = M
11 9 10 syl φ M + 1 - 1 = M
12 11 eqcomd φ M = M + 1 - 1
13 12 oveq2d φ 0 ..^ M = 0 ..^ M + 1 - 1
14 13 eleq2d φ I 1 0 ..^ M I 1 0 ..^ M + 1 - 1
15 3 elfzelzd φ I
16 4 peano2zd φ M + 1
17 elfzom1b I M + 1 I 1 ..^ M + 1 I 1 0 ..^ M + 1 - 1
18 15 16 17 syl2anc φ I 1 ..^ M + 1 I 1 0 ..^ M + 1 - 1
19 14 18 bitr4d φ I 1 0 ..^ M I 1 ..^ M + 1
20 8 19 mpbird φ I 1 0 ..^ M
21 iccpartimp M P RePart M I 1 0 ..^ M P * 0 M P I 1 < P I - 1 + 1
22 1 2 20 21 syl3anc φ P * 0 M P I 1 < P I - 1 + 1
23 22 simprd φ P I 1 < P I - 1 + 1
24 15 zcnd φ I
25 npcan1 I I - 1 + 1 = I
26 24 25 syl φ I - 1 + 1 = I
27 26 eqcomd φ I = I - 1 + 1
28 27 fveq2d φ P I = P I - 1 + 1
29 23 28 breqtrrd φ P I 1 < P I