Metamath Proof Explorer


Theorem iccpartipre

Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
iccpartipre.i φ I 1 ..^ M
Assertion iccpartipre φ P I

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 iccpartipre.i φ I 1 ..^ M
4 nnz M M
5 peano2zm M M 1
6 id M M
7 zre M M
8 7 lem1d M M 1 M
9 5 6 8 3jca M M 1 M M 1 M
10 4 9 syl M M 1 M M 1 M
11 eluz2 M M 1 M 1 M M 1 M
12 10 11 sylibr M M M 1
13 1 12 syl φ M M 1
14 fzss2 M M 1 0 M 1 0 M
15 13 14 syl φ 0 M 1 0 M
16 fzossfz 1 ..^ M 1 M
17 16 3 sselid φ I 1 M
18 elfzoelz I 1 ..^ M I
19 3 18 syl φ I
20 1 nnzd φ M
21 elfzm1b I M I 1 M I 1 0 M 1
22 19 20 21 syl2anc φ I 1 M I 1 0 M 1
23 17 22 mpbid φ I 1 0 M 1
24 15 23 sseldd φ I 1 0 M
25 1 2 24 iccpartxr φ P I 1 *
26 1eluzge0 1 0
27 fzoss1 1 0 1 ..^ M 0 ..^ M
28 26 27 mp1i φ 1 ..^ M 0 ..^ M
29 fzossfz 0 ..^ M 0 M
30 28 29 sstrdi φ 1 ..^ M 0 M
31 30 3 sseldd φ I 0 M
32 1 2 31 iccpartxr φ P I *
33 28 3 sseldd φ I 0 ..^ M
34 fzofzp1 I 0 ..^ M I + 1 0 M
35 33 34 syl φ I + 1 0 M
36 1 2 35 iccpartxr φ P I + 1 *
37 1 2 17 iccpartgtprec φ P I 1 < P I
38 iccpartimp M P RePart M I 0 ..^ M P * 0 M P I < P I + 1
39 1 2 33 38 syl3anc φ P * 0 M P I < P I + 1
40 39 simprd φ P I < P I + 1
41 xrre2 P I 1 * P I * P I + 1 * P I 1 < P I P I < P I + 1 P I
42 25 32 36 37 40 41 syl32anc φ P I