Metamath Proof Explorer


Theorem iccpartiun

Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φM
iccpartiun.p φPRePartM
Assertion iccpartiun φP0PM=i0..^MPiPi+1

Proof

Step Hyp Ref Expression
1 iccpartiun.m φM
2 iccpartiun.p φPRePartM
3 iccelpart MpRePartMxp0pMi0..^Mxpipi+1
4 fveq1 p=Pp0=P0
5 fveq1 p=PpM=PM
6 4 5 oveq12d p=Pp0pM=P0PM
7 6 eleq2d p=Pxp0pMxP0PM
8 fveq1 p=Ppi=Pi
9 fveq1 p=Ppi+1=Pi+1
10 8 9 oveq12d p=Ppipi+1=PiPi+1
11 10 eleq2d p=Pxpipi+1xPiPi+1
12 11 rexbidv p=Pi0..^Mxpipi+1i0..^MxPiPi+1
13 7 12 imbi12d p=Pxp0pMi0..^Mxpipi+1xP0PMi0..^MxPiPi+1
14 13 rspcva PRePartMpRePartMxp0pMi0..^Mxpipi+1xP0PMi0..^MxPiPi+1
15 14 expcom pRePartMxp0pMi0..^Mxpipi+1PRePartMxP0PMi0..^MxPiPi+1
16 1 3 15 3syl φPRePartMxP0PMi0..^MxPiPi+1
17 2 16 mpd φxP0PMi0..^MxPiPi+1
18 nnnn0 MM0
19 0elfz M000M
20 1 18 19 3syl φ00M
21 1 2 20 iccpartxr φP0*
22 nn0fz0 M0M0M
23 22 biimpi M0M0M
24 1 18 23 3syl φM0M
25 1 2 24 iccpartxr φPM*
26 21 25 jca φP0*PM*
27 26 adantr φi0..^MP0*PM*
28 elfzofz i0..^Mi0M
29 1 2 iccpartgel φj0MP0Pj
30 fveq2 j=iPj=Pi
31 30 breq2d j=iP0PjP0Pi
32 31 rspcva i0Mj0MP0PjP0Pi
33 28 29 32 syl2anr φi0..^MP0Pi
34 fzofzp1 i0..^Mi+10M
35 1 2 iccpartleu φk0MPkPM
36 fveq2 k=i+1Pk=Pi+1
37 36 breq1d k=i+1PkPMPi+1PM
38 37 rspcva i+10Mk0MPkPMPi+1PM
39 34 35 38 syl2anr φi0..^MPi+1PM
40 icossico P0*PM*P0PiPi+1PMPiPi+1P0PM
41 27 33 39 40 syl12anc φi0..^MPiPi+1P0PM
42 41 sseld φi0..^MxPiPi+1xP0PM
43 42 rexlimdva φi0..^MxPiPi+1xP0PM
44 17 43 impbid φxP0PMi0..^MxPiPi+1
45 eliun xi0..^MPiPi+1i0..^MxPiPi+1
46 44 45 bitr4di φxP0PMxi0..^MPiPi+1
47 46 eqrdv φP0PM=i0..^MPiPi+1