Metamath Proof Explorer


Theorem iccpartleu

Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartleu φi0MPiPM

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 nnnn0 MM0
4 elnn0uz M0M0
5 3 4 sylib MM0
6 1 5 syl φM0
7 fzisfzounsn M00M=0..^MM
8 6 7 syl φ0M=0..^MM
9 8 eleq2d φi0Mi0..^MM
10 elun i0..^MMi0..^MiM
11 10 a1i φi0..^MMi0..^MiM
12 velsn iMi=M
13 12 a1i φiMi=M
14 13 orbi2d φi0..^MiMi0..^Mi=M
15 9 11 14 3bitrd φi0Mi0..^Mi=M
16 1 adantr φi0..^MM
17 2 adantr φi0..^MPRePartM
18 fzossfz 0..^M0M
19 18 a1i φ0..^M0M
20 19 sselda φi0..^Mi0M
21 16 17 20 iccpartxr φi0..^MPi*
22 nn0fz0 M0M0M
23 3 22 sylib MM0M
24 1 23 syl φM0M
25 1 2 24 iccpartxr φPM*
26 25 adantr φi0..^MPM*
27 1 2 iccpartltu φk0..^MPk<PM
28 fveq2 k=iPk=Pi
29 28 breq1d k=iPk<PMPi<PM
30 29 rspccv k0..^MPk<PMi0..^MPi<PM
31 27 30 syl φi0..^MPi<PM
32 31 imp φi0..^MPi<PM
33 21 26 32 xrltled φi0..^MPiPM
34 33 expcom i0..^MφPiPM
35 fveq2 i=MPi=PM
36 35 adantr i=MφPi=PM
37 25 xrleidd φPMPM
38 37 adantl i=MφPMPM
39 36 38 eqbrtrd i=MφPiPM
40 39 ex i=MφPiPM
41 34 40 jaoi i0..^Mi=MφPiPM
42 41 com12 φi0..^Mi=MPiPM
43 15 42 sylbid φi0MPiPM
44 43 ralrimiv φi0MPiPM