Metamath Proof Explorer


Theorem iccpartnel

Description: A point of a partition is not an element of any open interval determined by the partition. Corresponds to fourierdlem12 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 8-Jul-2020)

Ref Expression
Hypotheses iccpartnel.m φ M
iccpartnel.p φ P RePart M
iccpartnel.x φ X ran P
Assertion iccpartnel φ I 0 ..^ M ¬ X P I P I + 1

Proof

Step Hyp Ref Expression
1 iccpartnel.m φ M
2 iccpartnel.p φ P RePart M
3 iccpartnel.x φ X ran P
4 elioo3g X P I P I + 1 P I * P I + 1 * X * P I < X X < P I + 1
5 iccpart M P RePart M P * 0 M i 0 ..^ M P i < P i + 1
6 1 5 syl φ P RePart M P * 0 M i 0 ..^ M P i < P i + 1
7 elmapfn P * 0 M P Fn 0 M
8 7 adantr P * 0 M i 0 ..^ M P i < P i + 1 P Fn 0 M
9 6 8 syl6bi φ P RePart M P Fn 0 M
10 2 9 mpd φ P Fn 0 M
11 fvelrnb P Fn 0 M X ran P x 0 M P x = X
12 10 11 syl φ X ran P x 0 M P x = X
13 3 12 mpbid φ x 0 M P x = X
14 elfzelz x 0 M x
15 14 zred x 0 M x
16 15 adantl φ x 0 M x
17 elfzoelz I 0 ..^ M I
18 17 zred I 0 ..^ M I
19 lelttric x I x I I < x
20 16 18 19 syl2an φ x 0 M I 0 ..^ M x I I < x
21 breq2 P x = X P I < P x P I < X
22 breq1 P x = X P x < P I + 1 X < P I + 1
23 21 22 anbi12d P x = X P I < P x P x < P I + 1 P I < X X < P I + 1
24 leloe x I x I x < I x = I
25 16 18 24 syl2an φ x 0 M I 0 ..^ M x I x < I x = I
26 1 2 iccpartgt φ i 0 M k 0 M i < k P i < P k
27 26 adantr φ x 0 M i 0 M k 0 M i < k P i < P k
28 27 adantr φ x 0 M I 0 ..^ M i 0 M k 0 M i < k P i < P k
29 simpr φ x 0 M x 0 M
30 elfzofz I 0 ..^ M I 0 M
31 breq1 i = x i < k x < k
32 fveq2 i = x P i = P x
33 32 breq1d i = x P i < P k P x < P k
34 31 33 imbi12d i = x i < k P i < P k x < k P x < P k
35 breq2 k = I x < k x < I
36 fveq2 k = I P k = P I
37 36 breq2d k = I P x < P k P x < P I
38 35 37 imbi12d k = I x < k P x < P k x < I P x < P I
39 34 38 rspc2v x 0 M I 0 M i 0 M k 0 M i < k P i < P k x < I P x < P I
40 29 30 39 syl2an φ x 0 M I 0 ..^ M i 0 M k 0 M i < k P i < P k x < I P x < P I
41 28 40 mpd φ x 0 M I 0 ..^ M x < I P x < P I
42 pm3.35 x < I x < I P x < P I P x < P I
43 1 adantr φ x 0 M M
44 2 adantr φ x 0 M P RePart M
45 43 44 29 iccpartxr φ x 0 M P x *
46 45 adantr φ x 0 M I 0 ..^ M P x *
47 simp1 P I * P I + 1 * X * P I *
48 xrltle P x * P I * P x < P I P x P I
49 46 47 48 syl2anr P I * P I + 1 * X * φ x 0 M I 0 ..^ M P x < P I P x P I
50 xrlenlt P x * P I * P x P I ¬ P I < P x
51 46 47 50 syl2anr P I * P I + 1 * X * φ x 0 M I 0 ..^ M P x P I ¬ P I < P x
52 49 51 sylibd P I * P I + 1 * X * φ x 0 M I 0 ..^ M P x < P I ¬ P I < P x
53 52 ex P I * P I + 1 * X * φ x 0 M I 0 ..^ M P x < P I ¬ P I < P x
54 53 com13 P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * ¬ P I < P x
55 54 imp P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * ¬ P I < P x
56 55 imp P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * ¬ P I < P x
57 56 pm2.21d P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
58 57 ex P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
59 58 ex P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
60 42 59 syl x < I x < I P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
61 60 ex x < I x < I P x < P I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
62 61 com13 φ x 0 M I 0 ..^ M x < I P x < P I x < I P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
63 41 62 mpd φ x 0 M I 0 ..^ M x < I P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
64 63 com12 x < I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
65 fveq2 x = I P x = P I
66 65 breq2d x = I P I < P x P I < P I
67 66 adantr x = I P I * P I + 1 * X * P I < P x P I < P I
68 xrltnr P I * ¬ P I < P I
69 68 3ad2ant1 P I * P I + 1 * X * ¬ P I < P I
70 69 adantl x = I P I * P I + 1 * X * ¬ P I < P I
71 70 pm2.21d x = I P I * P I + 1 * X * P I < P I ¬ X P I P I + 1
72 67 71 sylbid x = I P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
73 72 ex x = I P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
74 73 a1d x = I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
75 64 74 jaoi x < I x = I φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
76 75 com12 φ x 0 M I 0 ..^ M x < I x = I P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
77 25 76 sylbid φ x 0 M I 0 ..^ M x I P I * P I + 1 * X * P I < P x ¬ X P I P I + 1
78 77 com23 φ x 0 M I 0 ..^ M P I * P I + 1 * X * x I P I < P x ¬ X P I P I + 1
79 78 com14 P I < P x P I * P I + 1 * X * x I φ x 0 M I 0 ..^ M ¬ X P I P I + 1
80 79 adantr P I < P x P x < P I + 1 P I * P I + 1 * X * x I φ x 0 M I 0 ..^ M ¬ X P I P I + 1
81 23 80 syl6bir P x = X P I < X X < P I + 1 P I * P I + 1 * X * x I φ x 0 M I 0 ..^ M ¬ X P I P I + 1
82 81 com14 x I P I < X X < P I + 1 P I * P I + 1 * X * P x = X φ x 0 M I 0 ..^ M ¬ X P I P I + 1
83 82 com23 x I P I * P I + 1 * X * P I < X X < P I + 1 P x = X φ x 0 M I 0 ..^ M ¬ X P I P I + 1
84 83 impd x I P I * P I + 1 * X * P I < X X < P I + 1 P x = X φ x 0 M I 0 ..^ M ¬ X P I P I + 1
85 84 com24 x I φ x 0 M I 0 ..^ M P x = X P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
86 14 adantl φ x 0 M x
87 zltp1le I x I < x I + 1 x
88 17 86 87 syl2anr φ x 0 M I 0 ..^ M I < x I + 1 x
89 17 peano2zd I 0 ..^ M I + 1
90 89 zred I 0 ..^ M I + 1
91 leloe I + 1 x I + 1 x I + 1 < x I + 1 = x
92 90 16 91 syl2anr φ x 0 M I 0 ..^ M I + 1 x I + 1 < x I + 1 = x
93 88 92 bitrd φ x 0 M I 0 ..^ M I < x I + 1 < x I + 1 = x
94 fzofzp1 I 0 ..^ M I + 1 0 M
95 breq1 i = I + 1 i < k I + 1 < k
96 fveq2 i = I + 1 P i = P I + 1
97 96 breq1d i = I + 1 P i < P k P I + 1 < P k
98 95 97 imbi12d i = I + 1 i < k P i < P k I + 1 < k P I + 1 < P k
99 breq2 k = x I + 1 < k I + 1 < x
100 fveq2 k = x P k = P x
101 100 breq2d k = x P I + 1 < P k P I + 1 < P x
102 99 101 imbi12d k = x I + 1 < k P I + 1 < P k I + 1 < x P I + 1 < P x
103 98 102 rspc2v I + 1 0 M x 0 M i 0 M k 0 M i < k P i < P k I + 1 < x P I + 1 < P x
104 94 29 103 syl2anr φ x 0 M I 0 ..^ M i 0 M k 0 M i < k P i < P k I + 1 < x P I + 1 < P x
105 28 104 mpd φ x 0 M I 0 ..^ M I + 1 < x P I + 1 < P x
106 pm3.35 I + 1 < x I + 1 < x P I + 1 < P x P I + 1 < P x
107 simp2 P I * P I + 1 * X * P I + 1 *
108 xrltnsym P x * P I + 1 * P x < P I + 1 ¬ P I + 1 < P x
109 46 107 108 syl2an φ x 0 M I 0 ..^ M P I * P I + 1 * X * P x < P I + 1 ¬ P I + 1 < P x
110 109 imp φ x 0 M I 0 ..^ M P I * P I + 1 * X * P x < P I + 1 ¬ P I + 1 < P x
111 110 pm2.21d φ x 0 M I 0 ..^ M P I * P I + 1 * X * P x < P I + 1 P I + 1 < P x ¬ X P I P I + 1
112 111 expcom P x < P I + 1 φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I + 1 < P x ¬ X P I P I + 1
113 112 expd P x < P I + 1 φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I + 1 < P x ¬ X P I P I + 1
114 113 adantl P I < P x P x < P I + 1 φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I + 1 < P x ¬ X P I P I + 1
115 114 com14 P I + 1 < P x φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
116 106 115 syl I + 1 < x I + 1 < x P I + 1 < P x φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
117 116 ex I + 1 < x I + 1 < x P I + 1 < P x φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
118 117 com13 φ x 0 M I 0 ..^ M I + 1 < x P I + 1 < P x I + 1 < x P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
119 105 118 mpd φ x 0 M I 0 ..^ M I + 1 < x P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
120 119 com12 I + 1 < x φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
121 fveq2 I + 1 = x P I + 1 = P x
122 121 breq2d I + 1 = x P I < P I + 1 P I < P x
123 121 breq1d I + 1 = x P I + 1 < P I + 1 P x < P I + 1
124 122 123 anbi12d I + 1 = x P I < P I + 1 P I + 1 < P I + 1 P I < P x P x < P I + 1
125 xrltnr P I + 1 * ¬ P I + 1 < P I + 1
126 125 3ad2ant2 P I * P I + 1 * X * ¬ P I + 1 < P I + 1
127 126 pm2.21d P I * P I + 1 * X * P I + 1 < P I + 1 ¬ X P I P I + 1
128 127 com12 P I + 1 < P I + 1 P I * P I + 1 * X * ¬ X P I P I + 1
129 128 adantl P I < P I + 1 P I + 1 < P I + 1 P I * P I + 1 * X * ¬ X P I P I + 1
130 124 129 syl6bir I + 1 = x P I < P x P x < P I + 1 P I * P I + 1 * X * ¬ X P I P I + 1
131 130 com23 I + 1 = x P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
132 131 a1d I + 1 = x φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
133 120 132 jaoi I + 1 < x I + 1 = x φ x 0 M I 0 ..^ M P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
134 133 com12 φ x 0 M I 0 ..^ M I + 1 < x I + 1 = x P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
135 93 134 sylbid φ x 0 M I 0 ..^ M I < x P I * P I + 1 * X * P I < P x P x < P I + 1 ¬ X P I P I + 1
136 135 com23 φ x 0 M I 0 ..^ M P I * P I + 1 * X * I < x P I < P x P x < P I + 1 ¬ X P I P I + 1
137 136 com14 P I < P x P x < P I + 1 P I * P I + 1 * X * I < x φ x 0 M I 0 ..^ M ¬ X P I P I + 1
138 23 137 syl6bir P x = X P I < X X < P I + 1 P I * P I + 1 * X * I < x φ x 0 M I 0 ..^ M ¬ X P I P I + 1
139 138 com14 I < x P I < X X < P I + 1 P I * P I + 1 * X * P x = X φ x 0 M I 0 ..^ M ¬ X P I P I + 1
140 139 com23 I < x P I * P I + 1 * X * P I < X X < P I + 1 P x = X φ x 0 M I 0 ..^ M ¬ X P I P I + 1
141 140 impd I < x P I * P I + 1 * X * P I < X X < P I + 1 P x = X φ x 0 M I 0 ..^ M ¬ X P I P I + 1
142 141 com24 I < x φ x 0 M I 0 ..^ M P x = X P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
143 85 142 jaoi x I I < x φ x 0 M I 0 ..^ M P x = X P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
144 143 com12 φ x 0 M I 0 ..^ M x I I < x P x = X P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
145 20 144 mpd φ x 0 M I 0 ..^ M P x = X P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
146 145 ex φ x 0 M I 0 ..^ M P x = X P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
147 146 com23 φ x 0 M P x = X I 0 ..^ M P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
148 147 rexlimdva φ x 0 M P x = X I 0 ..^ M P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
149 13 148 mpd φ I 0 ..^ M P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
150 149 imp φ I 0 ..^ M P I * P I + 1 * X * P I < X X < P I + 1 ¬ X P I P I + 1
151 150 com12 P I * P I + 1 * X * P I < X X < P I + 1 φ I 0 ..^ M ¬ X P I P I + 1
152 4 151 sylbi X P I P I + 1 φ I 0 ..^ M ¬ X P I P I + 1
153 ax-1 ¬ X P I P I + 1 φ I 0 ..^ M ¬ X P I P I + 1
154 152 153 pm2.61i φ I 0 ..^ M ¬ X P I P I + 1