Metamath Proof Explorer


Theorem iccpartres

Description: The restriction of a partition is a partition. (Contributed by AV, 16-Jul-2020)

Ref Expression
Assertion iccpartres M P RePart M + 1 P 0 M RePart M

Proof

Step Hyp Ref Expression
1 peano2nn M M + 1
2 iccpart M + 1 P RePart M + 1 P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1
3 1 2 syl M P RePart M + 1 P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1
4 simpl P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 P * 0 M + 1
5 nnz M M
6 uzid M M M
7 5 6 syl M M M
8 peano2uz M M M + 1 M
9 7 8 syl M M + 1 M
10 fzss2 M + 1 M 0 M 0 M + 1
11 9 10 syl M 0 M 0 M + 1
12 elmapssres P * 0 M + 1 0 M 0 M + 1 P 0 M * 0 M
13 4 11 12 syl2anr M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 P 0 M * 0 M
14 fzoss2 M + 1 M 0 ..^ M 0 ..^ M + 1
15 9 14 syl M 0 ..^ M 0 ..^ M + 1
16 ssralv 0 ..^ M 0 ..^ M + 1 i 0 ..^ M + 1 P i < P i + 1 i 0 ..^ M P i < P i + 1
17 15 16 syl M i 0 ..^ M + 1 P i < P i + 1 i 0 ..^ M P i < P i + 1
18 17 adantld M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 i 0 ..^ M P i < P i + 1
19 18 imp M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 i 0 ..^ M P i < P i + 1
20 fzossfz 0 ..^ M 0 M
21 20 a1i P * 0 M + 1 M 0 ..^ M 0 M
22 21 sselda P * 0 M + 1 M i 0 ..^ M i 0 M
23 fvres i 0 M P 0 M i = P i
24 23 eqcomd i 0 M P i = P 0 M i
25 22 24 syl P * 0 M + 1 M i 0 ..^ M P i = P 0 M i
26 simpr P * 0 M + 1 M i 0 ..^ M i 0 ..^ M
27 elfzouz i 0 ..^ M i 0
28 27 adantl P * 0 M + 1 M i 0 ..^ M i 0
29 fzofzp1b i 0 i 0 ..^ M i + 1 0 M
30 28 29 syl P * 0 M + 1 M i 0 ..^ M i 0 ..^ M i + 1 0 M
31 26 30 mpbid P * 0 M + 1 M i 0 ..^ M i + 1 0 M
32 fvres i + 1 0 M P 0 M i + 1 = P i + 1
33 31 32 syl P * 0 M + 1 M i 0 ..^ M P 0 M i + 1 = P i + 1
34 33 eqcomd P * 0 M + 1 M i 0 ..^ M P i + 1 = P 0 M i + 1
35 25 34 breq12d P * 0 M + 1 M i 0 ..^ M P i < P i + 1 P 0 M i < P 0 M i + 1
36 35 biimpd P * 0 M + 1 M i 0 ..^ M P i < P i + 1 P 0 M i < P 0 M i + 1
37 36 ralimdva P * 0 M + 1 M i 0 ..^ M P i < P i + 1 i 0 ..^ M P 0 M i < P 0 M i + 1
38 37 ex P * 0 M + 1 M i 0 ..^ M P i < P i + 1 i 0 ..^ M P 0 M i < P 0 M i + 1
39 38 adantr P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 M i 0 ..^ M P i < P i + 1 i 0 ..^ M P 0 M i < P 0 M i + 1
40 39 impcom M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 i 0 ..^ M P i < P i + 1 i 0 ..^ M P 0 M i < P 0 M i + 1
41 19 40 mpd M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 i 0 ..^ M P 0 M i < P 0 M i + 1
42 iccpart M P 0 M RePart M P 0 M * 0 M i 0 ..^ M P 0 M i < P 0 M i + 1
43 42 adantr M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 P 0 M RePart M P 0 M * 0 M i 0 ..^ M P 0 M i < P 0 M i + 1
44 13 41 43 mpbir2and M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 P 0 M RePart M
45 44 ex M P * 0 M + 1 i 0 ..^ M + 1 P i < P i + 1 P 0 M RePart M
46 3 45 sylbid M P RePart M + 1 P 0 M RePart M
47 46 imp M P RePart M + 1 P 0 M RePart M