Metamath Proof Explorer


Theorem iccpartrn

Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
Assertion iccpartrn φ ran P P 0 P M

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 iccpart M P RePart M P * 0 M i 0 ..^ M P i < P i + 1
4 1 3 syl φ P RePart M P * 0 M i 0 ..^ M P i < P i + 1
5 elmapfn P * 0 M P Fn 0 M
6 5 adantr P * 0 M i 0 ..^ M P i < P i + 1 P Fn 0 M
7 4 6 syl6bi φ P RePart M P Fn 0 M
8 2 7 mpd φ P Fn 0 M
9 fvelrnb P Fn 0 M p ran P i 0 M P i = p
10 8 9 syl φ p ran P i 0 M P i = p
11 1 adantr φ i 0 M M
12 2 adantr φ i 0 M P RePart M
13 simpr φ i 0 M i 0 M
14 11 12 13 iccpartxr φ i 0 M P i *
15 1 2 iccpartgel φ k 0 M P 0 P k
16 fveq2 k = i P k = P i
17 16 breq2d k = i P 0 P k P 0 P i
18 17 rspcva i 0 M k 0 M P 0 P k P 0 P i
19 18 expcom k 0 M P 0 P k i 0 M P 0 P i
20 15 19 syl φ i 0 M P 0 P i
21 20 imp φ i 0 M P 0 P i
22 1 2 iccpartleu φ k 0 M P k P M
23 16 breq1d k = i P k P M P i P M
24 23 rspcva i 0 M k 0 M P k P M P i P M
25 24 expcom k 0 M P k P M i 0 M P i P M
26 22 25 syl φ i 0 M P i P M
27 26 imp φ i 0 M P i P M
28 nnnn0 M M 0
29 0elfz M 0 0 0 M
30 1 28 29 3syl φ 0 0 M
31 1 2 30 iccpartxr φ P 0 *
32 nn0fz0 M 0 M 0 M
33 28 32 sylib M M 0 M
34 1 33 syl φ M 0 M
35 1 2 34 iccpartxr φ P M *
36 31 35 jca φ P 0 * P M *
37 36 adantr φ i 0 M P 0 * P M *
38 elicc1 P 0 * P M * P i P 0 P M P i * P 0 P i P i P M
39 37 38 syl φ i 0 M P i P 0 P M P i * P 0 P i P i P M
40 14 21 27 39 mpbir3and φ i 0 M P i P 0 P M
41 eleq1 P i = p P i P 0 P M p P 0 P M
42 40 41 syl5ibcom φ i 0 M P i = p p P 0 P M
43 42 rexlimdva φ i 0 M P i = p p P 0 P M
44 10 43 sylbid φ p ran P p P 0 P M
45 44 ssrdv φ ran P P 0 P M