Metamath Proof Explorer


Theorem iccpartxr

Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φ M
iccpartgtprec.p φ P RePart M
iccpartxr.i φ I 0 M
Assertion iccpartxr φ P I *

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φ M
2 iccpartgtprec.p φ P RePart M
3 iccpartxr.i φ I 0 M
4 iccpart M P RePart M P * 0 M i 0 ..^ M P i < P i + 1
5 1 4 syl φ P RePart M P * 0 M i 0 ..^ M P i < P i + 1
6 2 5 mpbid φ P * 0 M i 0 ..^ M P i < P i + 1
7 6 simpld φ P * 0 M
8 elmapi P * 0 M P : 0 M *
9 7 8 syl φ P : 0 M *
10 9 3 ffvelrnd φ P I *