Metamath Proof Explorer


Theorem iccpnfcnv

Description: Define a bijection from [ 0 , 1 ] to [ 0 , +oo ] . (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis iccpnfhmeo.f F = x 0 1 if x = 1 +∞ x 1 x
Assertion iccpnfcnv F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 1 y 1 + y

Proof

Step Hyp Ref Expression
1 iccpnfhmeo.f F = x 0 1 if x = 1 +∞ x 1 x
2 0xr 0 *
3 pnfxr +∞ *
4 0lepnf 0 +∞
5 ubicc2 0 * +∞ * 0 +∞ +∞ 0 +∞
6 2 3 4 5 mp3an +∞ 0 +∞
7 6 a1i x 0 1 x = 1 +∞ 0 +∞
8 icossicc 0 +∞ 0 +∞
9 1xr 1 *
10 0le1 0 1
11 snunico 0 * 1 * 0 1 0 1 1 = 0 1
12 2 9 10 11 mp3an 0 1 1 = 0 1
13 12 eleq2i x 0 1 1 x 0 1
14 elun x 0 1 1 x 0 1 x 1
15 13 14 bitr3i x 0 1 x 0 1 x 1
16 pm2.53 x 0 1 x 1 ¬ x 0 1 x 1
17 15 16 sylbi x 0 1 ¬ x 0 1 x 1
18 elsni x 1 x = 1
19 17 18 syl6 x 0 1 ¬ x 0 1 x = 1
20 19 con1d x 0 1 ¬ x = 1 x 0 1
21 20 imp x 0 1 ¬ x = 1 x 0 1
22 eqid x 0 1 x 1 x = x 0 1 x 1 x
23 22 icopnfcnv x 0 1 x 1 x : 0 1 1-1 onto 0 +∞ x 0 1 x 1 x -1 = y 0 +∞ y 1 + y
24 23 simpli x 0 1 x 1 x : 0 1 1-1 onto 0 +∞
25 f1of x 0 1 x 1 x : 0 1 1-1 onto 0 +∞ x 0 1 x 1 x : 0 1 0 +∞
26 24 25 ax-mp x 0 1 x 1 x : 0 1 0 +∞
27 22 fmpt x 0 1 x 1 x 0 +∞ x 0 1 x 1 x : 0 1 0 +∞
28 26 27 mpbir x 0 1 x 1 x 0 +∞
29 28 rspec x 0 1 x 1 x 0 +∞
30 21 29 syl x 0 1 ¬ x = 1 x 1 x 0 +∞
31 8 30 sselid x 0 1 ¬ x = 1 x 1 x 0 +∞
32 7 31 ifclda x 0 1 if x = 1 +∞ x 1 x 0 +∞
33 32 adantl x 0 1 if x = 1 +∞ x 1 x 0 +∞
34 1elunit 1 0 1
35 34 a1i y 0 +∞ y = +∞ 1 0 1
36 icossicc 0 1 0 1
37 snunico 0 * +∞ * 0 +∞ 0 +∞ +∞ = 0 +∞
38 2 3 4 37 mp3an 0 +∞ +∞ = 0 +∞
39 38 eleq2i y 0 +∞ +∞ y 0 +∞
40 elun y 0 +∞ +∞ y 0 +∞ y +∞
41 39 40 bitr3i y 0 +∞ y 0 +∞ y +∞
42 pm2.53 y 0 +∞ y +∞ ¬ y 0 +∞ y +∞
43 41 42 sylbi y 0 +∞ ¬ y 0 +∞ y +∞
44 elsni y +∞ y = +∞
45 43 44 syl6 y 0 +∞ ¬ y 0 +∞ y = +∞
46 45 con1d y 0 +∞ ¬ y = +∞ y 0 +∞
47 46 imp y 0 +∞ ¬ y = +∞ y 0 +∞
48 f1ocnv x 0 1 x 1 x : 0 1 1-1 onto 0 +∞ x 0 1 x 1 x -1 : 0 +∞ 1-1 onto 0 1
49 f1of x 0 1 x 1 x -1 : 0 +∞ 1-1 onto 0 1 x 0 1 x 1 x -1 : 0 +∞ 0 1
50 24 48 49 mp2b x 0 1 x 1 x -1 : 0 +∞ 0 1
51 23 simpri x 0 1 x 1 x -1 = y 0 +∞ y 1 + y
52 51 fmpt y 0 +∞ y 1 + y 0 1 x 0 1 x 1 x -1 : 0 +∞ 0 1
53 50 52 mpbir y 0 +∞ y 1 + y 0 1
54 53 rspec y 0 +∞ y 1 + y 0 1
55 47 54 syl y 0 +∞ ¬ y = +∞ y 1 + y 0 1
56 36 55 sselid y 0 +∞ ¬ y = +∞ y 1 + y 0 1
57 35 56 ifclda y 0 +∞ if y = +∞ 1 y 1 + y 0 1
58 57 adantl y 0 +∞ if y = +∞ 1 y 1 + y 0 1
59 eqeq2 1 = if y = +∞ 1 y 1 + y x = 1 x = if y = +∞ 1 y 1 + y
60 59 bibi1d 1 = if y = +∞ 1 y 1 + y x = 1 y = if x = 1 +∞ x 1 x x = if y = +∞ 1 y 1 + y y = if x = 1 +∞ x 1 x
61 eqeq2 y 1 + y = if y = +∞ 1 y 1 + y x = y 1 + y x = if y = +∞ 1 y 1 + y
62 61 bibi1d y 1 + y = if y = +∞ 1 y 1 + y x = y 1 + y y = if x = 1 +∞ x 1 x x = if y = +∞ 1 y 1 + y y = if x = 1 +∞ x 1 x
63 simpr x 0 1 y 0 +∞ y = +∞ y = +∞
64 iftrue x = 1 if x = 1 +∞ x 1 x = +∞
65 64 eqeq2d x = 1 y = if x = 1 +∞ x 1 x y = +∞
66 63 65 syl5ibrcom x 0 1 y 0 +∞ y = +∞ x = 1 y = if x = 1 +∞ x 1 x
67 pnfnre +∞
68 neleq1 y = +∞ y +∞
69 68 adantl x 0 1 y 0 +∞ y = +∞ y +∞
70 67 69 mpbiri x 0 1 y 0 +∞ y = +∞ y
71 neleq1 y = if x = 1 +∞ x 1 x y if x = 1 +∞ x 1 x
72 70 71 syl5ibcom x 0 1 y 0 +∞ y = +∞ y = if x = 1 +∞ x 1 x if x = 1 +∞ x 1 x
73 df-nel if x = 1 +∞ x 1 x ¬ if x = 1 +∞ x 1 x
74 iffalse ¬ x = 1 if x = 1 +∞ x 1 x = x 1 x
75 74 adantl x 0 1 ¬ x = 1 if x = 1 +∞ x 1 x = x 1 x
76 rge0ssre 0 +∞
77 76 30 sselid x 0 1 ¬ x = 1 x 1 x
78 75 77 eqeltrd x 0 1 ¬ x = 1 if x = 1 +∞ x 1 x
79 78 ex x 0 1 ¬ x = 1 if x = 1 +∞ x 1 x
80 79 ad2antrr x 0 1 y 0 +∞ y = +∞ ¬ x = 1 if x = 1 +∞ x 1 x
81 80 con1d x 0 1 y 0 +∞ y = +∞ ¬ if x = 1 +∞ x 1 x x = 1
82 73 81 syl5bi x 0 1 y 0 +∞ y = +∞ if x = 1 +∞ x 1 x x = 1
83 72 82 syld x 0 1 y 0 +∞ y = +∞ y = if x = 1 +∞ x 1 x x = 1
84 66 83 impbid x 0 1 y 0 +∞ y = +∞ x = 1 y = if x = 1 +∞ x 1 x
85 eqeq2 +∞ = if x = 1 +∞ x 1 x y = +∞ y = if x = 1 +∞ x 1 x
86 85 bibi2d +∞ = if x = 1 +∞ x 1 x x = y 1 + y y = +∞ x = y 1 + y y = if x = 1 +∞ x 1 x
87 eqeq2 x 1 x = if x = 1 +∞ x 1 x y = x 1 x y = if x = 1 +∞ x 1 x
88 87 bibi2d x 1 x = if x = 1 +∞ x 1 x x = y 1 + y y = x 1 x x = y 1 + y y = if x = 1 +∞ x 1 x
89 0re 0
90 elico2 0 1 * y 1 + y 0 1 y 1 + y 0 y 1 + y y 1 + y < 1
91 89 9 90 mp2an y 1 + y 0 1 y 1 + y 0 y 1 + y y 1 + y < 1
92 55 91 sylib y 0 +∞ ¬ y = +∞ y 1 + y 0 y 1 + y y 1 + y < 1
93 92 simp1d y 0 +∞ ¬ y = +∞ y 1 + y
94 92 simp3d y 0 +∞ ¬ y = +∞ y 1 + y < 1
95 93 94 gtned y 0 +∞ ¬ y = +∞ 1 y 1 + y
96 95 adantll x 0 1 y 0 +∞ ¬ y = +∞ 1 y 1 + y
97 96 neneqd x 0 1 y 0 +∞ ¬ y = +∞ ¬ 1 = y 1 + y
98 eqeq1 x = 1 x = y 1 + y 1 = y 1 + y
99 98 notbid x = 1 ¬ x = y 1 + y ¬ 1 = y 1 + y
100 97 99 syl5ibrcom x 0 1 y 0 +∞ ¬ y = +∞ x = 1 ¬ x = y 1 + y
101 100 imp x 0 1 y 0 +∞ ¬ y = +∞ x = 1 ¬ x = y 1 + y
102 simplr x 0 1 y 0 +∞ ¬ y = +∞ x = 1 ¬ y = +∞
103 101 102 2falsed x 0 1 y 0 +∞ ¬ y = +∞ x = 1 x = y 1 + y y = +∞
104 f1ocnvfvb x 0 1 x 1 x : 0 1 1-1 onto 0 +∞ x 0 1 y 0 +∞ x 0 1 x 1 x x = y x 0 1 x 1 x -1 y = x
105 24 104 mp3an1 x 0 1 y 0 +∞ x 0 1 x 1 x x = y x 0 1 x 1 x -1 y = x
106 simpl x 0 1 y 0 +∞ x 0 1
107 ovex x 1 x V
108 22 fvmpt2 x 0 1 x 1 x V x 0 1 x 1 x x = x 1 x
109 106 107 108 sylancl x 0 1 y 0 +∞ x 0 1 x 1 x x = x 1 x
110 109 eqeq1d x 0 1 y 0 +∞ x 0 1 x 1 x x = y x 1 x = y
111 simpr x 0 1 y 0 +∞ y 0 +∞
112 ovex y 1 + y V
113 51 fvmpt2 y 0 +∞ y 1 + y V x 0 1 x 1 x -1 y = y 1 + y
114 111 112 113 sylancl x 0 1 y 0 +∞ x 0 1 x 1 x -1 y = y 1 + y
115 114 eqeq1d x 0 1 y 0 +∞ x 0 1 x 1 x -1 y = x y 1 + y = x
116 105 110 115 3bitr3rd x 0 1 y 0 +∞ y 1 + y = x x 1 x = y
117 eqcom x = y 1 + y y 1 + y = x
118 eqcom y = x 1 x x 1 x = y
119 116 117 118 3bitr4g x 0 1 y 0 +∞ x = y 1 + y y = x 1 x
120 21 47 119 syl2an x 0 1 ¬ x = 1 y 0 +∞ ¬ y = +∞ x = y 1 + y y = x 1 x
121 120 an4s x 0 1 y 0 +∞ ¬ x = 1 ¬ y = +∞ x = y 1 + y y = x 1 x
122 121 anass1rs x 0 1 y 0 +∞ ¬ y = +∞ ¬ x = 1 x = y 1 + y y = x 1 x
123 86 88 103 122 ifbothda x 0 1 y 0 +∞ ¬ y = +∞ x = y 1 + y y = if x = 1 +∞ x 1 x
124 60 62 84 123 ifbothda x 0 1 y 0 +∞ x = if y = +∞ 1 y 1 + y y = if x = 1 +∞ x 1 x
125 124 adantl x 0 1 y 0 +∞ x = if y = +∞ 1 y 1 + y y = if x = 1 +∞ x 1 x
126 1 33 58 125 f1ocnv2d F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 1 y 1 + y
127 126 mptru F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 1 y 1 + y