Metamath Proof Explorer


Theorem iccshftli

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftli.1 A
iccshftli.2 B
iccshftli.3 R
iccshftli.4 A R = C
iccshftli.5 B R = D
Assertion iccshftli X A B X R C D

Proof

Step Hyp Ref Expression
1 iccshftli.1 A
2 iccshftli.2 B
3 iccshftli.3 R
4 iccshftli.4 A R = C
5 iccshftli.5 B R = D
6 iccssre A B A B
7 1 2 6 mp2an A B
8 7 sseli X A B X
9 4 5 iccshftl A B X R X A B X R C D
10 1 2 9 mpanl12 X R X A B X R C D
11 3 10 mpan2 X X A B X R C D
12 11 biimpd X X A B X R C D
13 8 12 mpcom X A B X R C D