Metamath Proof Explorer


Theorem iccshftr

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftr.1 A + R = C
iccshftr.2 B + R = D
Assertion iccshftr A B X R X A B X + R C D

Proof

Step Hyp Ref Expression
1 iccshftr.1 A + R = C
2 iccshftr.2 B + R = D
3 simpl X R X
4 readdcl X R X + R
5 3 4 2thd X R X X + R
6 5 adantl A B X R X X + R
7 leadd1 A X R A X A + R X + R
8 7 3expb A X R A X A + R X + R
9 8 adantlr A B X R A X A + R X + R
10 1 breq1i A + R X + R C X + R
11 9 10 bitrdi A B X R A X C X + R
12 leadd1 X B R X B X + R B + R
13 12 3expb X B R X B X + R B + R
14 13 an12s B X R X B X + R B + R
15 14 adantll A B X R X B X + R B + R
16 2 breq2i X + R B + R X + R D
17 15 16 bitrdi A B X R X B X + R D
18 6 11 17 3anbi123d A B X R X A X X B X + R C X + R X + R D
19 elicc2 A B X A B X A X X B
20 19 adantr A B X R X A B X A X X B
21 readdcl A R A + R
22 1 21 eqeltrrid A R C
23 readdcl B R B + R
24 2 23 eqeltrrid B R D
25 elicc2 C D X + R C D X + R C X + R X + R D
26 22 24 25 syl2an A R B R X + R C D X + R C X + R X + R D
27 26 anandirs A B R X + R C D X + R C X + R X + R D
28 27 adantrl A B X R X + R C D X + R C X + R X + R D
29 18 20 28 3bitr4d A B X R X A B X + R C D