Metamath Proof Explorer


Theorem iccshftri

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftri.1 A
iccshftri.2 B
iccshftri.3 R
iccshftri.4 A + R = C
iccshftri.5 B + R = D
Assertion iccshftri X A B X + R C D

Proof

Step Hyp Ref Expression
1 iccshftri.1 A
2 iccshftri.2 B
3 iccshftri.3 R
4 iccshftri.4 A + R = C
5 iccshftri.5 B + R = D
6 iccssre A B A B
7 1 2 6 mp2an A B
8 7 sseli X A B X
9 4 5 iccshftr A B X R X A B X + R C D
10 1 2 9 mpanl12 X R X A B X + R C D
11 3 10 mpan2 X X A B X + R C D
12 11 biimpd X X A B X + R C D
13 8 12 mpcom X A B X + R C D