Metamath Proof Explorer


Theorem iccshift

Description: A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iccshift.1 φ A
iccshift.2 φ B
iccshift.3 φ T
Assertion iccshift φ A + T B + T = w | z A B w = z + T

Proof

Step Hyp Ref Expression
1 iccshift.1 φ A
2 iccshift.2 φ B
3 iccshift.3 φ T
4 eqeq1 w = x w = z + T x = z + T
5 4 rexbidv w = x z A B w = z + T z A B x = z + T
6 5 elrab x w | z A B w = z + T x z A B x = z + T
7 simprr φ x z A B x = z + T z A B x = z + T
8 nfv z φ
9 nfv z x
10 nfre1 z z A B x = z + T
11 9 10 nfan z x z A B x = z + T
12 8 11 nfan z φ x z A B x = z + T
13 nfv z x A + T B + T
14 simp3 φ z A B x = z + T x = z + T
15 1 2 iccssred φ A B
16 15 sselda φ z A B z
17 3 adantr φ z A B T
18 16 17 readdcld φ z A B z + T
19 1 adantr φ z A B A
20 simpr φ z A B z A B
21 2 adantr φ z A B B
22 elicc2 A B z A B z A z z B
23 19 21 22 syl2anc φ z A B z A B z A z z B
24 20 23 mpbid φ z A B z A z z B
25 24 simp2d φ z A B A z
26 19 16 17 25 leadd1dd φ z A B A + T z + T
27 24 simp3d φ z A B z B
28 16 21 17 27 leadd1dd φ z A B z + T B + T
29 18 26 28 3jca φ z A B z + T A + T z + T z + T B + T
30 29 3adant3 φ z A B x = z + T z + T A + T z + T z + T B + T
31 1 3 readdcld φ A + T
32 31 3ad2ant1 φ z A B x = z + T A + T
33 2 3 readdcld φ B + T
34 33 3ad2ant1 φ z A B x = z + T B + T
35 elicc2 A + T B + T z + T A + T B + T z + T A + T z + T z + T B + T
36 32 34 35 syl2anc φ z A B x = z + T z + T A + T B + T z + T A + T z + T z + T B + T
37 30 36 mpbird φ z A B x = z + T z + T A + T B + T
38 14 37 eqeltrd φ z A B x = z + T x A + T B + T
39 38 3exp φ z A B x = z + T x A + T B + T
40 39 adantr φ x z A B x = z + T z A B x = z + T x A + T B + T
41 12 13 40 rexlimd φ x z A B x = z + T z A B x = z + T x A + T B + T
42 7 41 mpd φ x z A B x = z + T x A + T B + T
43 6 42 sylan2b φ x w | z A B w = z + T x A + T B + T
44 31 adantr φ x A + T B + T A + T
45 33 adantr φ x A + T B + T B + T
46 simpr φ x A + T B + T x A + T B + T
47 eliccre A + T B + T x A + T B + T x
48 44 45 46 47 syl3anc φ x A + T B + T x
49 48 recnd φ x A + T B + T x
50 1 adantr φ x A + T B + T A
51 2 adantr φ x A + T B + T B
52 3 adantr φ x A + T B + T T
53 48 52 resubcld φ x A + T B + T x T
54 1 recnd φ A
55 3 recnd φ T
56 54 55 pncand φ A + T - T = A
57 56 eqcomd φ A = A + T - T
58 57 adantr φ x A + T B + T A = A + T - T
59 elicc2 A + T B + T x A + T B + T x A + T x x B + T
60 44 45 59 syl2anc φ x A + T B + T x A + T B + T x A + T x x B + T
61 46 60 mpbid φ x A + T B + T x A + T x x B + T
62 61 simp2d φ x A + T B + T A + T x
63 44 48 52 62 lesub1dd φ x A + T B + T A + T - T x T
64 58 63 eqbrtrd φ x A + T B + T A x T
65 61 simp3d φ x A + T B + T x B + T
66 48 45 52 65 lesub1dd φ x A + T B + T x T B + T - T
67 2 recnd φ B
68 67 55 pncand φ B + T - T = B
69 68 adantr φ x A + T B + T B + T - T = B
70 66 69 breqtrd φ x A + T B + T x T B
71 50 51 53 64 70 eliccd φ x A + T B + T x T A B
72 55 adantr φ x A + T B + T T
73 49 72 npcand φ x A + T B + T x - T + T = x
74 73 eqcomd φ x A + T B + T x = x - T + T
75 oveq1 z = x T z + T = x - T + T
76 75 rspceeqv x T A B x = x - T + T z A B x = z + T
77 71 74 76 syl2anc φ x A + T B + T z A B x = z + T
78 49 77 6 sylanbrc φ x A + T B + T x w | z A B w = z + T
79 43 78 impbida φ x w | z A B w = z + T x A + T B + T
80 79 eqrdv φ w | z A B w = z + T = A + T B + T
81 80 eqcomd φ A + T B + T = w | z A B w = z + T