Step |
Hyp |
Ref |
Expression |
1 |
|
iccshift.1 |
|
2 |
|
iccshift.2 |
|
3 |
|
iccshift.3 |
|
4 |
|
eqeq1 |
|
5 |
4
|
rexbidv |
|
6 |
5
|
elrab |
|
7 |
|
simprr |
|
8 |
|
nfv |
|
9 |
|
nfv |
|
10 |
|
nfre1 |
|
11 |
9 10
|
nfan |
|
12 |
8 11
|
nfan |
|
13 |
|
nfv |
|
14 |
|
simp3 |
|
15 |
1 2
|
iccssred |
|
16 |
15
|
sselda |
|
17 |
3
|
adantr |
|
18 |
16 17
|
readdcld |
|
19 |
1
|
adantr |
|
20 |
|
simpr |
|
21 |
2
|
adantr |
|
22 |
|
elicc2 |
|
23 |
19 21 22
|
syl2anc |
|
24 |
20 23
|
mpbid |
|
25 |
24
|
simp2d |
|
26 |
19 16 17 25
|
leadd1dd |
|
27 |
24
|
simp3d |
|
28 |
16 21 17 27
|
leadd1dd |
|
29 |
18 26 28
|
3jca |
|
30 |
29
|
3adant3 |
|
31 |
1 3
|
readdcld |
|
32 |
31
|
3ad2ant1 |
|
33 |
2 3
|
readdcld |
|
34 |
33
|
3ad2ant1 |
|
35 |
|
elicc2 |
|
36 |
32 34 35
|
syl2anc |
|
37 |
30 36
|
mpbird |
|
38 |
14 37
|
eqeltrd |
|
39 |
38
|
3exp |
|
40 |
39
|
adantr |
|
41 |
12 13 40
|
rexlimd |
|
42 |
7 41
|
mpd |
|
43 |
6 42
|
sylan2b |
|
44 |
31
|
adantr |
|
45 |
33
|
adantr |
|
46 |
|
simpr |
|
47 |
|
eliccre |
|
48 |
44 45 46 47
|
syl3anc |
|
49 |
48
|
recnd |
|
50 |
1
|
adantr |
|
51 |
2
|
adantr |
|
52 |
3
|
adantr |
|
53 |
48 52
|
resubcld |
|
54 |
1
|
recnd |
|
55 |
3
|
recnd |
|
56 |
54 55
|
pncand |
|
57 |
56
|
eqcomd |
|
58 |
57
|
adantr |
|
59 |
|
elicc2 |
|
60 |
44 45 59
|
syl2anc |
|
61 |
46 60
|
mpbid |
|
62 |
61
|
simp2d |
|
63 |
44 48 52 62
|
lesub1dd |
|
64 |
58 63
|
eqbrtrd |
|
65 |
61
|
simp3d |
|
66 |
48 45 52 65
|
lesub1dd |
|
67 |
2
|
recnd |
|
68 |
67 55
|
pncand |
|
69 |
68
|
adantr |
|
70 |
66 69
|
breqtrd |
|
71 |
50 51 53 64 70
|
eliccd |
|
72 |
55
|
adantr |
|
73 |
49 72
|
npcand |
|
74 |
73
|
eqcomd |
|
75 |
|
oveq1 |
|
76 |
75
|
rspceeqv |
|
77 |
71 74 76
|
syl2anc |
|
78 |
49 77 6
|
sylanbrc |
|
79 |
43 78
|
impbida |
|
80 |
79
|
eqrdv |
|
81 |
80
|
eqcomd |
|