Metamath Proof Explorer


Theorem iccsplit

Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iccsplit A B C A B A B = A C C B

Proof

Step Hyp Ref Expression
1 simplr1 A B C A B x A x x B x < C x
2 simplr2 A B C A B x A x x B x < C A x
3 simpr1 A B C A B x A x x B x
4 iccssre A B A B
5 4 sseld A B C A B C
6 5 3impia A B C A B C
7 6 adantr A B C A B x A x x B C
8 ltle x C x < C x C
9 3 7 8 syl2anc A B C A B x A x x B x < C x C
10 9 imp A B C A B x A x x B x < C x C
11 1 2 10 3jca A B C A B x A x x B x < C x A x x C
12 11 orcd A B C A B x A x x B x < C x A x x C x C x x B
13 simplr1 A B C A B x A x x B C x x
14 simpr A B C A B x A x x B C x C x
15 simplr3 A B C A B x A x x B C x x B
16 13 14 15 3jca A B C A B x A x x B C x x C x x B
17 16 olcd A B C A B x A x x B C x x A x x C x C x x B
18 12 17 3 7 ltlecasei A B C A B x A x x B x A x x C x C x x B
19 18 ex A B C A B x A x x B x A x x C x C x x B
20 simp1 x A x x C x
21 20 a1i A B C A B x A x x C x
22 simp2 x A x x C A x
23 22 a1i A B C A B x A x x C A x
24 elicc2 A B C A B C A C C B
25 20 3ad2ant3 A B C A C C B x A x x C x
26 simp1 C A C C B C
27 26 3ad2ant2 A B C A C C B x A x x C C
28 simp1r A B C A C C B x A x x C B
29 simp3 x A x x C x C
30 29 3ad2ant3 A B C A C C B x A x x C x C
31 simp3 C A C C B C B
32 31 3ad2ant2 A B C A C C B x A x x C C B
33 25 27 28 30 32 letrd A B C A C C B x A x x C x B
34 33 3exp A B C A C C B x A x x C x B
35 24 34 sylbid A B C A B x A x x C x B
36 35 3impia A B C A B x A x x C x B
37 21 23 36 3jcad A B C A B x A x x C x A x x B
38 simp1 x C x x B x
39 38 a1i A B C A B x C x x B x
40 simp1l A B C A C C B x C x x B A
41 26 3ad2ant2 A B C A C C B x C x x B C
42 38 3ad2ant3 A B C A C C B x C x x B x
43 simp2 C A C C B A C
44 43 3ad2ant2 A B C A C C B x C x x B A C
45 simp2 x C x x B C x
46 45 3ad2ant3 A B C A C C B x C x x B C x
47 40 41 42 44 46 letrd A B C A C C B x C x x B A x
48 47 3exp A B C A C C B x C x x B A x
49 24 48 sylbid A B C A B x C x x B A x
50 49 3impia A B C A B x C x x B A x
51 simp3 x C x x B x B
52 51 a1i A B C A B x C x x B x B
53 39 50 52 3jcad A B C A B x C x x B x A x x B
54 37 53 jaod A B C A B x A x x C x C x x B x A x x B
55 19 54 impbid A B C A B x A x x B x A x x C x C x x B
56 elicc2 A B x A B x A x x B
57 56 3adant3 A B C A B x A B x A x x B
58 5 imdistani A B C A B A B C
59 58 3impa A B C A B A B C
60 elicc2 A C x A C x A x x C
61 60 adantlr A B C x A C x A x x C
62 elicc2 C B x C B x C x x B
63 62 ancoms B C x C B x C x x B
64 63 adantll A B C x C B x C x x B
65 61 64 orbi12d A B C x A C x C B x A x x C x C x x B
66 59 65 syl A B C A B x A C x C B x A x x C x C x x B
67 55 57 66 3bitr4d A B C A B x A B x A C x C B
68 elun x A C C B x A C x C B
69 67 68 bitr4di A B C A B x A B x A C C B
70 69 eqrdv A B C A B A B = A C C B