Step |
Hyp |
Ref |
Expression |
1 |
|
simplr1 |
|
2 |
|
simplr2 |
|
3 |
|
simpr1 |
|
4 |
|
iccssre |
|
5 |
4
|
sseld |
|
6 |
5
|
3impia |
|
7 |
6
|
adantr |
|
8 |
|
ltle |
|
9 |
3 7 8
|
syl2anc |
|
10 |
9
|
imp |
|
11 |
1 2 10
|
3jca |
|
12 |
11
|
orcd |
|
13 |
|
simplr1 |
|
14 |
|
simpr |
|
15 |
|
simplr3 |
|
16 |
13 14 15
|
3jca |
|
17 |
16
|
olcd |
|
18 |
12 17 3 7
|
ltlecasei |
|
19 |
18
|
ex |
|
20 |
|
simp1 |
|
21 |
20
|
a1i |
|
22 |
|
simp2 |
|
23 |
22
|
a1i |
|
24 |
|
elicc2 |
|
25 |
20
|
3ad2ant3 |
|
26 |
|
simp1 |
|
27 |
26
|
3ad2ant2 |
|
28 |
|
simp1r |
|
29 |
|
simp3 |
|
30 |
29
|
3ad2ant3 |
|
31 |
|
simp3 |
|
32 |
31
|
3ad2ant2 |
|
33 |
25 27 28 30 32
|
letrd |
|
34 |
33
|
3exp |
|
35 |
24 34
|
sylbid |
|
36 |
35
|
3impia |
|
37 |
21 23 36
|
3jcad |
|
38 |
|
simp1 |
|
39 |
38
|
a1i |
|
40 |
|
simp1l |
|
41 |
26
|
3ad2ant2 |
|
42 |
38
|
3ad2ant3 |
|
43 |
|
simp2 |
|
44 |
43
|
3ad2ant2 |
|
45 |
|
simp2 |
|
46 |
45
|
3ad2ant3 |
|
47 |
40 41 42 44 46
|
letrd |
|
48 |
47
|
3exp |
|
49 |
24 48
|
sylbid |
|
50 |
49
|
3impia |
|
51 |
|
simp3 |
|
52 |
51
|
a1i |
|
53 |
39 50 52
|
3jcad |
|
54 |
37 53
|
jaod |
|
55 |
19 54
|
impbid |
|
56 |
|
elicc2 |
|
57 |
56
|
3adant3 |
|
58 |
5
|
imdistani |
|
59 |
58
|
3impa |
|
60 |
|
elicc2 |
|
61 |
60
|
adantlr |
|
62 |
|
elicc2 |
|
63 |
62
|
ancoms |
|
64 |
63
|
adantll |
|
65 |
61 64
|
orbi12d |
|
66 |
59 65
|
syl |
|
67 |
55 57 66
|
3bitr4d |
|
68 |
|
elun |
|
69 |
67 68
|
bitr4di |
|
70 |
69
|
eqrdv |
|