| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr1 |
|
| 2 |
|
simplr2 |
|
| 3 |
|
simpr1 |
|
| 4 |
|
iccssre |
|
| 5 |
4
|
sseld |
|
| 6 |
5
|
3impia |
|
| 7 |
6
|
adantr |
|
| 8 |
|
ltle |
|
| 9 |
3 7 8
|
syl2anc |
|
| 10 |
9
|
imp |
|
| 11 |
1 2 10
|
3jca |
|
| 12 |
11
|
orcd |
|
| 13 |
|
simplr1 |
|
| 14 |
|
simpr |
|
| 15 |
|
simplr3 |
|
| 16 |
13 14 15
|
3jca |
|
| 17 |
16
|
olcd |
|
| 18 |
12 17 3 7
|
ltlecasei |
|
| 19 |
18
|
ex |
|
| 20 |
|
simp1 |
|
| 21 |
20
|
a1i |
|
| 22 |
|
simp2 |
|
| 23 |
22
|
a1i |
|
| 24 |
|
elicc2 |
|
| 25 |
20
|
3ad2ant3 |
|
| 26 |
|
simp1 |
|
| 27 |
26
|
3ad2ant2 |
|
| 28 |
|
simp1r |
|
| 29 |
|
simp3 |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
|
simp3 |
|
| 32 |
31
|
3ad2ant2 |
|
| 33 |
25 27 28 30 32
|
letrd |
|
| 34 |
33
|
3exp |
|
| 35 |
24 34
|
sylbid |
|
| 36 |
35
|
3impia |
|
| 37 |
21 23 36
|
3jcad |
|
| 38 |
|
simp1 |
|
| 39 |
38
|
a1i |
|
| 40 |
|
simp1l |
|
| 41 |
26
|
3ad2ant2 |
|
| 42 |
38
|
3ad2ant3 |
|
| 43 |
|
simp2 |
|
| 44 |
43
|
3ad2ant2 |
|
| 45 |
|
simp2 |
|
| 46 |
45
|
3ad2ant3 |
|
| 47 |
40 41 42 44 46
|
letrd |
|
| 48 |
47
|
3exp |
|
| 49 |
24 48
|
sylbid |
|
| 50 |
49
|
3impia |
|
| 51 |
|
simp3 |
|
| 52 |
51
|
a1i |
|
| 53 |
39 50 52
|
3jcad |
|
| 54 |
37 53
|
jaod |
|
| 55 |
19 54
|
impbid |
|
| 56 |
|
elicc2 |
|
| 57 |
56
|
3adant3 |
|
| 58 |
5
|
imdistani |
|
| 59 |
58
|
3impa |
|
| 60 |
|
elicc2 |
|
| 61 |
60
|
adantlr |
|
| 62 |
|
elicc2 |
|
| 63 |
62
|
ancoms |
|
| 64 |
63
|
adantll |
|
| 65 |
61 64
|
orbi12d |
|
| 66 |
59 65
|
syl |
|
| 67 |
55 57 66
|
3bitr4d |
|
| 68 |
|
elun |
|
| 69 |
67 68
|
bitr4di |
|
| 70 |
69
|
eqrdv |
|