Metamath Proof Explorer


Theorem iccss

Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccss A B A C D B C D A B

Proof

Step Hyp Ref Expression
1 rexr A A *
2 rexr B B *
3 1 2 anim12i A B A * B *
4 df-icc . = x * , y * z * | x z z y
5 xrletr A * C * w * A C C w A w
6 xrletr w * D * B * w D D B w B
7 4 4 5 6 ixxss12 A * B * A C D B C D A B
8 3 7 sylan A B A C D B C D A B