Metamath Proof Explorer


Theorem iccss2

Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion iccss2 C A B D A B C D A B

Proof

Step Hyp Ref Expression
1 df-icc . = x * , y * z * | x z z y
2 1 elixx3g C A B A * B * C * A C C B
3 2 simplbi C A B A * B * C *
4 3 adantr C A B D A B A * B * C *
5 4 simp1d C A B D A B A *
6 4 simp2d C A B D A B B *
7 2 simprbi C A B A C C B
8 7 adantr C A B D A B A C C B
9 8 simpld C A B D A B A C
10 1 elixx3g D A B A * B * D * A D D B
11 10 simprbi D A B A D D B
12 11 simprd D A B D B
13 12 adantl C A B D A B D B
14 xrletr A * C * w * A C C w A w
15 xrletr w * D * B * w D D B w B
16 1 1 14 15 ixxss12 A * B * A C D B C D A B
17 5 6 9 13 16 syl22anc C A B D A B C D A B