Metamath Proof Explorer


Theorem iccssico

Description: Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion iccssico A * B * A C D < B C D A B

Proof

Step Hyp Ref Expression
1 df-ico . = x * , y * z * | x z z < y
2 df-icc . = x * , y * z * | x z z y
3 xrletr A * C * w * A C C w A w
4 xrlelttr w * D * B * w D D < B w < B
5 1 2 3 4 ixxss12 A * B * A C D < B C D A B