Metamath Proof Explorer


Theorem iccssico2

Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssico2 C A B D A B C D A B

Proof

Step Hyp Ref Expression
1 df-ico . = x * , y * z * | x z z < y
2 1 elmpocl1 C A B A *
3 2 adantr C A B D A B A *
4 1 elmpocl2 C A B B *
5 4 adantr C A B D A B B *
6 1 elixx3g C A B A * B * C * A C C < B
7 6 simprbi C A B A C C < B
8 7 simpld C A B A C
9 8 adantr C A B D A B A C
10 1 elixx3g D A B A * B * D * A D D < B
11 10 simprbi D A B A D D < B
12 11 simprd D A B D < B
13 12 adantl C A B D A B D < B
14 iccssico A * B * A C D < B C D A B
15 3 5 9 13 14 syl22anc C A B D A B C D A B