Metamath Proof Explorer


Theorem iccssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssioo A * B * A < C D < B C D A B

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 df-icc . = x * , y * z * | x z z y
3 xrltletr A * C * w * A < C C w A < w
4 xrlelttr w * D * B * w D D < B w < B
5 1 2 3 4 ixxss12 A * B * A < C D < B C D A B