Metamath Proof Explorer


Theorem iccssioo2

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssioo2 C A B D A B C D A B

Proof

Step Hyp Ref Expression
1 ne0i C A B A B
2 1 adantr C A B D A B A B
3 ndmioo ¬ A * B * A B =
4 3 necon1ai A B A * B *
5 2 4 syl C A B D A B A * B *
6 eliooord C A B A < C C < B
7 6 adantr C A B D A B A < C C < B
8 7 simpld C A B D A B A < C
9 eliooord D A B A < D D < B
10 9 adantl C A B D A B A < D D < B
11 10 simprd C A B D A B D < B
12 iccssioo A * B * A < C D < B C D A B
13 5 8 11 12 syl12anc C A B D A B C D A B