Metamath Proof Explorer


Theorem iccvolcl

Description: A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Assertion iccvolcl A B vol A B

Proof

Step Hyp Ref Expression
1 iccmbl A B A B dom vol
2 mblvol A B dom vol vol A B = vol * A B
3 1 2 syl A B vol A B = vol * A B
4 rexr A A *
5 rexr B B *
6 icc0 A * B * A B = B < A
7 4 5 6 syl2an A B A B = B < A
8 7 biimpar A B B < A A B =
9 fveq2 A B = vol * A B = vol *
10 ovol0 vol * = 0
11 9 10 eqtrdi A B = vol * A B = 0
12 0re 0
13 11 12 eqeltrdi A B = vol * A B
14 8 13 syl A B B < A vol * A B
15 ovolicc A B A B vol * A B = B A
16 15 3expa A B A B vol * A B = B A
17 resubcl B A B A
18 17 ancoms A B B A
19 18 adantr A B A B B A
20 16 19 eqeltrd A B A B vol * A B
21 simpr A B B
22 simpl A B A
23 14 20 21 22 ltlecasei A B vol * A B
24 3 23 eqeltrd A B vol A B