| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
|
| 2 |
|
nfv |
|
| 3 |
|
nfich1 |
|
| 4 |
1 2 3
|
nf3an |
|
| 5 |
|
nfv |
|
| 6 |
|
nfcv |
|
| 7 |
|
nfsbc1v |
|
| 8 |
6 7
|
nfsbcw |
|
| 9 |
5 8
|
nfan |
|
| 10 |
9
|
nfex |
|
| 11 |
10
|
nfex |
|
| 12 |
|
nfv |
|
| 13 |
|
nfv |
|
| 14 |
|
nfich2 |
|
| 15 |
12 13 14
|
nf3an |
|
| 16 |
|
nfv |
|
| 17 |
|
nfsbc1v |
|
| 18 |
16 17
|
nfan |
|
| 19 |
18
|
nfex |
|
| 20 |
19
|
nfex |
|
| 21 |
|
vex |
|
| 22 |
|
vex |
|
| 23 |
|
preq12bg |
|
| 24 |
21 22 23
|
mpanr12 |
|
| 25 |
24
|
3adant3 |
|
| 26 |
|
or2expropbilem1 |
|
| 27 |
26
|
3adant3 |
|
| 28 |
|
ichcom |
|
| 29 |
28
|
biimpi |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
30
|
adantr |
|
| 32 |
22 21
|
pm3.2i |
|
| 33 |
32
|
a1i |
|
| 34 |
31 33
|
anim12i |
|
| 35 |
|
simpr |
|
| 36 |
|
opeq12 |
|
| 37 |
35 36
|
anim12ci |
|
| 38 |
|
nfv |
|
| 39 |
|
nfv |
|
| 40 |
|
opeq12 |
|
| 41 |
40
|
eqeq2d |
|
| 42 |
41
|
adantl |
|
| 43 |
|
dfsbcq |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
adantl |
|
| 46 |
|
sbceq1a |
|
| 47 |
46
|
adantr |
|
| 48 |
|
df-ich |
|
| 49 |
|
sbsbc |
|
| 50 |
|
sbsbc |
|
| 51 |
|
sbsbc |
|
| 52 |
51
|
sbcbii |
|
| 53 |
50 52
|
bitri |
|
| 54 |
53
|
sbcbii |
|
| 55 |
49 54
|
bitri |
|
| 56 |
|
2sp |
|
| 57 |
55 56
|
bitr3id |
|
| 58 |
48 57
|
sylbi |
|
| 59 |
47 58
|
sylan9bbr |
|
| 60 |
45 59
|
bitrd |
|
| 61 |
42 60
|
anbi12d |
|
| 62 |
38 39 61
|
spc2ed |
|
| 63 |
34 37 62
|
sylc |
|
| 64 |
63
|
exp31 |
|
| 65 |
64
|
com23 |
|
| 66 |
27 65
|
jaod |
|
| 67 |
25 66
|
sylbid |
|
| 68 |
67
|
impd |
|
| 69 |
15 20 68
|
exlimd |
|
| 70 |
4 11 69
|
exlimd |
|
| 71 |
|
or2expropbilem2 |
|
| 72 |
70 71
|
imbitrrdi |
|
| 73 |
|
oppr |
|
| 74 |
73
|
anim1d |
|
| 75 |
74
|
2eximdv |
|
| 76 |
75
|
3adant3 |
|
| 77 |
72 76
|
impbid |
|